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things easier but did keep my efforts in perspective. I
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In many cases, the reference cited are not inclusive, :2

but are prominent in the field or contain extensive bib- -i

liographies. The Bibliography in this dissertation is

more detailed than the text references and is intended to

provide a good foundation for those wishing to further

research the field of non-parametric density estimation.
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Abs tract

A new non-parametric probability density estimator is

developed which has the following properties:

1) It yields a continuous, non-negative and piecewise

linear estimate.

2) It converges to the true density function if the

true density has no more than a finite number of discon-

tinuities of a form where the value of the function at the

. -discontinuity can be considered the average of the

limiting values on either side of the discontinuity.

3) It requires no user supplied parameters.

- The estimator is shown to have significantly better

error properties, for certain classes of distributions,

than existing density estimators. The quality of the

estimate is discussed, tabulated and graphically demon-

strated. Applications, including parameterization, small

sample analysis, and two sample tests are presented.

These newly developed applications are shown to improve

upon the generally accepted existing techniques. Guide-

lines for choosing a density estimation method along with

an organized approach to method selection are discussed.

ix
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1. Introduction.

The historical development of non-parametric prob-

-ability density function estimators stems from the histo-

gram type estimator which was inspired by John Graunt and

further developed by mathematicians such as Petty,

Huygens, van Dael and Halley (230). Density estimation

has been attempted by distinguished statisticians includ-

ing Pearson, Gossett, Fisher, Johnson, et.al.(52,143,203).

Their methods include methods of parameterization, kernel

estimators, distance estimation, entropy methods, spline

techniques and series estimators. This dissertation pre-

sents a new non-parametric density estimator.

A question which is logically addressed is: "What good

is a density estimator?" Some uses of density estimators

were discussed by Sweeder (202) and much of the work pre-

sented in this dissertation is an extension of his ground-

breaking efforts. Some other uses of density estimates

are discussed throughout this paper. The specific appli-

cations presented by Sweeder were avoided here since re-

doing them with a slightly different estimt, seemed

rather trivial. Some new applications of density esti-

mates are presented in this dissertation. In particular,

a two-sample test is discussed which takes advantage of

the potentially large difference created by an unbounded

operator acting upon relatively small differences in the

o- " ...
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CDFs. The intent of this dissertation is to develop the

actual estimator and show the use of an estimator of this

type. Many of the "proofs" rely on empirical evidence

-obtained from tremendously expensive Monte Carlo analysis.

In these cases only enough of the Monte Carlo runs were

completed to demonstrate the techniques and results.

Throughout this dissertation, comparisons will be made

among results from samples from uniform, normal, and

double exponential (Laplace) distributions. The estimator

developed is not limited to these, or even symmetric, -

distributions, but for comparison purposes with previous

research (226) much of the work presented here uses these

three distributions, which are assumed to be representa-

tive of platykurtic, mesokurtic, and leptokurtic distribu-

tions in general.

The dissertation is divided into four main sections

(Chapters II-V). The first discusses the development of

the estimator itself, the underlying theory, and the

trade-offs made in its development along with the reasons

for those trade-offs. The second main section is essen-

tially a validation of the estimator developed in the

first section. Both graphical and tabular comparisons of

results are given. The third section presents some appli-

cations including parameterization through distance esti-

nation, a new small sample analysis technique, and a new

two-sample test. Other possible applications are dis-

2
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cussed. The last main section was inspired by a goal

which was set during the definition phase of this research

program. That goal was to develop a density estimator

-which could be used by the relatively uninitiated without

the requirement to choose any parameters. This section - Xp

presents some general, easy to understand and apply guide-

lines for when to use this, or for that matter any, non-

parametric estimator. Supporting data for a choice

between this estimator and some others is presented.

The final chapter summarizes the results of this

research effort. There is always another step to be taken

in research and Chapter VI discusses several possible

directions in which to take that step. Hopefully it will

be of use to those continuing down the path to better non-

parametric density estimators and new applications of

those estimators.

L

3
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11. The Estimator.

Non-parametric density function estimators sutf fr, to

-one extent or another, f rom some or all of the follow ing

problems:

1) They require user specified "parameters" which can

greatly affect the shape of the estimated function, but

cannot be, or are not easily, optimally determined. This

problem is exacerbated when the estimator Is overly sensi-

tive to these "parameters". For example, the maximum

penalized likelihood estimator (39,178,203) requires two -

such parameters. Although it is theoretically possible to

f Ind the optimal values, realistically the values are

determined by trial and error. This makes density estima-

tion an art, with the result that, when this particular

estimator is used by the unskilled, all estimates tend to

look like normal density functions. Since this estimator

and a kernel estimator with similar problems are the only

ones commonly available (they appear in the International

Mathematical and Statistical Libraries (IMSL) package of

FORTRAN subroutines available through IMSL, 7500 Bellaire

Blvd., Houston, TX, 77036), many potential users may have

rejected non-parametric density estimation as too diffi-

cult or not accurate enough.

2) They tend to be noisy, like the frequency polygon

estimator (203). This can be corrected by averaging or

4



other smoothing processes such as Sweeder used. Mayof

the Bootstrap techniques (47) are suitable for this job.

Frequency domain smoothing via Fourier transform analysis

-may also be used.

3) They are not uniquely defined, particularly for

small samples. That is, one may obtain an entirely dif-

ferent estimate by slightly varying a parameter of the

estimator. The histogram estimator typifies this problem.
S

4) They only give reasonable estimates for relatively

large samples. This Is a problem in virtually all non-

parametric estimators (Sweeder-s being a notable excep-
I . .

tion.) Unfortunately, in many cases, large samples are

difficult or expensive to obtain.

5) They require restrictive assumptions about the

form of the underlying distribution (i.e. symmetry, uni-

modality, infinite or finite support, etc.)

6) They do not balance sensitivity and robustness.

That is, they tend to either give the same density shape

for samples from a wide variety of distributions, or they

are overly sensitive to sample peculiarities such as out-

liers or closely grouped data points. The very nature of

a random sample makes these deficiencies difficult to

handle. For example, if one makes adjustments to the

estimator to take into account close spacing of sample

points, then true peaks in the density will be rounded and

true valleys will be filled.

5
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7) They result in an infeasible estimate. Many

common density estimators yield negative densities, others

estimate support which does not include the entire sample.

The above problems cannot all be solved simulta-

neously. The interactions among these areas is what makes 4-L

density estimation so difficult.

All non-parametric density estimators have the add-

itional problem of estimating the support for the density.

This is usually handled in one of the following manners:

1) Estimate f(x j X( 1 ) j x < x(n))

2) Estimate the support based on some sample extrapo-

lation rule.

3) Assume some support based on knowledge of the data

source, for example (0,ao), (0,1), (-a , co), etc. This is

a sort of Bayesian non-parametric estimation.

4) Estimate the support from the extreme order sta-

tistics from a set of samples. That is, estimate the

distribution of x(1) and x(n) and select some percentage

point of these distributions as the estimate of the

endpoint (64). There is seldom enough data available to

actually use this method.

Endpoint estimation techniques used in this estimator

will be discussed later in this chapter. For now we

assume that the density is non-zero only on the interval

[x(O),x(n+1)], that values of x(0) and x(n+l) have already

been defined or estimated, and that these values converge

6

%1.

-.__,- - .-. .,.' ,- .- . ,. .. ,.- . .,.. - .-...., .....-..... ..... ,..-.:... .,.



- --- - -7 . -

to the true support of the distribution as the sample size

increases. A

= 11.1 Develop ment of the Istimator

Consider a random sample, xl~x2,x 3, ...,Ixn, of size n

from an unknown univariate, continuous probability distri-

bution function, F(x). Let x(l)Ix(2),...,x(,) represent

the ordered random sample such that xOx2 -. N)

Now define Gi G(x(i)), i-1,2,...,n be the plotting rule

that is associated with the ith order statistic. Gi is a

value of the sample distribution function at this point,

of the form G~ (i+a)/(n+/3), with -1 < a < /3(1(we

will discuss selection of plotting rule parameters ai and /

in more detail later in this chapter.) Let

AG -Gi -Gi.i-1 1I(n+3)

We know that

f(x)dx -F(x(i)) - Fx(i...1)

if we approximate

F(xci)) -F(x( 1 j)) -AG

and assume that f(x) varies linearly between x(,i.l) and

7
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x(i) we obtain:

" 2 G/(x(i) - X(i-l)) -i-I

-where

fi - f(x(i))

For a plotting rule using = 0 this is similar to the

classical frequency polygon estimator.

This estimator has some nasty properties. The value

at some points may be negative since f 1 is not guaran-

teed to be less than (2AG)/(x(i)-x(il)). In addition,

since f(x(o)) or f(x(n+l)) may be arbitrarily defined

there are an infinite number of possible estimators. Even

if we define the density as zero at the endpoints the

estimation process can be started at either end and the

result will, in general, depend upon the end at which we

start. This means that the estimator is dependent upon

the path taken through the sample.

Both of these undesirable characteristics may be cor-

rected. Assume some fi is the first estimate calculated

as a negative value. Let = 0,

and set

* A x( )]/(x)
ft-1 = [4AG - fi(xi -x(i- 2 ) (x) (i-2)

The next calculated value, f = 0, will always bei+1

greater than zero, as will fl 1 - 0 (See Figure 1). The

1: 8
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result of this process is a piecewise linear, non-negative

estimate of f(x) given by:

f(x) - + (x-x(il))(fi-fi-l)/x(i)-x(l))

x(i-1) _ x x(i)
and "_L

f(x) - 0 x [ [x(0),x(+1)J

Which, when integrated, yields a continuous, piecewise

quadratic distribution function, F(x).

In order to remove the ambiguity in f(x) which exists

from the possibility of starting the process at either

end, we calculate the forward estimate, f(x), and the

backward estimate, f(x), and average the two to obtain

f(x). This process not only removes the path ambiguity

but also tends to eliminate zero values of the density

estimate introduced in order to assure non-negativity of

f(x). Figures 2(a) and 2(b) show the results of using

the estimator, as described so far, on random samples of

size 100 from two distributions. Notice that this estima-

tor is quite noisy. We will consider a solution to this

problem shortly.

The estimator does have some desirable properties when

we consider the distribution function estimate.
L

1) F(x) is differentiable everywhere.

2) F(x) is a distribution function.

3) Gi < F(x(i)) < Gi i1-,2 ,...,n

10
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These properties are essentially the same as those of

Sweeder's estimator. However this estimator has the addi-

tional property that it does not necessarily go to zero at

the sample points. It is this feature that will allow us

to show convergence to the true density, and reduce the

amount of smoothing required to obtain a "good" density

estimate.

Analogous to Sweeder we may use a Bootstrap (47) type

technique to obtain some smoothing of our estimator. This

is desirable for cases where we have unnaturally closely

grouped data within the sample (i.e. data which does not

reflect the true character of the underlying distribu-

tion.) Experimentation with samples from known distribu-

tions indicates that this is a problem which occurs

frequently in small sample situations. We choose d sub-

samples from our original sample as follows:

{x(j) Jfk+md , k-1,2 ,. .. ,d; d < oo

d<n/2; m-O,1,2,..., [(n-k)/d -"

Estimates are calculated using each of these subsamples

successively so that we have estimates, fjx

j1,2,...,d. The estimator for f(x) is obtained by

averaging:

d

f1 (x)f (x) - dl ..

13



11.2 Properties of the Estimator

A desirable property of an estimator is that it con-

verges to the true function as the sample size increases.

The estimator obtained so far has this property as will be

shown in the following theorems, but first some fundamen-

tal definitions.

Let R be the real line, B a Borel field on R and P a

probability measure defined on B. The function F defined

on (R,B,P) by F(x) = P({I:I=(- a ,xJ RI) is the distribu-

tion function of P.

F (x), as we have defined it, is a distributionn

function, since:

1) F (x) = f(x)dx is non-decreasingn J n

since f (x) is non-negative by construction.
n

2) Fn(x) is continuous by construction

3) F (x) - 0 x < X(O)

F n(x) 1 1 x > X(n+l) by definition

Therefore Fn (x) is a probability distribution function.

The following development also assumes a random

sample, XIX 2 ,...,xn from a continuous distribution, F(x),

and that F'(x) exists. Parenthetical subscripts are again

used to represent the ordered sample.

14
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Lemma 1 - A finite convex combination of sequences of

functions, each of which converges (uniformly) to a single

function, will converge (uniformly) to that function.

Proof Let f23" be a set of sequences[f J( j l,2, 3 ...

with

ifi 1 (x) -f(x)I < E j > N 1-1,2,...,k

and let

k k

S(x) = Oaifij(x) ; ce = 1 ; Ci 0
i=I i-I'

then 1 -

Is(x) - .tf(x) I I Eaf j(x) - if(x)l

I Zi( fij (x) f f(x) )I E li ~ If ij(x) f f(x)I <

E = E

The extension to uniform convergence is analogous if we

start with the hypothesis:

Ifi (x) - f(x)I < IE j > N ; V x c Ri"'j

Lemma 2 - Given a partition, Pn {X<X2 <...<x }of

(a,b) such that g(x;P n) -> g(x), any evenly divided sub-
n|

partition,

15
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P= X ;Juk+md, k-i1,2,...,d; d<ao

d<n/2; m-O,1,2,...,rIn-k)/d]1

results in g(x;P) --- > g(x).

Proof

IgxPp gxPq < E/ 2 ;V x E (a,b) ;pjq > N1  1

Since P pand P qare partitions and we have uniform conver-

gence, this is the Cauchy condition. Also

Ig(x) -g(x;p )I < e/2 ; x c (a,b) ; p > N 2

by def inition. .-

Now let N =d max(N1 ,N) then from (1) we have

Ig(x;P) - g(x;P~) N E/2

and

Ig(x;P N) -g(x)l < g(x;P) - g x~ +

jg(x) -g(x;P )J< IC
p-

so

Ig(x;P )-g(xfl ( E x c (a,b) m > N

That is:

- unif >gx
gI(x;P > )x

16



The above Lemmas allow us to prove convergence of the

basic estimator and then extend it easily to the sub-

sampled case without directly considering each estimator

based on a subsample.

Theorem 1 - The sequences F (x) converge almost

everywhere to F(x) where:

0 x < xJ(o)

- -j..)
i-lwa

2

(Xj( )-xj(iXl)) .. "

(x_

xJ-) < x < xj(i)

x > x'' ~'t
-:..-

t _

and

2 f

7m +7) xJ(i-1)
2i_ - -i ..i1

x ( _) < x < xj( )t°

fj(x) - - -

0 otherwise '

7
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(Since I represents the index of a sequence based upon a

particular subsample, and we intend to show the proof for~p
one subsample and later extend it using Lemmas 1 and 2, we

-will temporarily drop the j subscript for simplicity.) -'-'

S
Proof - Consider the points x(); i 1,2,...,n+l

10 i-0

F(x(i))

S1 iin+l

This is essentially the empirical distribution function,

E(x), which has been shown to converge almost everywhere

to F(x). -

That is

lim E (x lim F(x)) lim G, F(x(i))
n-> o n-> 00 -.

For any x in the interval [X( l),X(t)) we know:

;(X < ;(x) < (x)

from the monotone property of F(x).

So: L

lim F(x( 1 _)) < li. F(x) < him F(x(i)) .

18



(where we denote lir as lir) or:
n->o 00 :

lir Gi < lira F(x) < lir Gi  B

F(x(i_.)) < lir F(x) < F(x(1 ))

and since

F(x~i Z ) < F(x) < F(x( )"

IF(x) - lim F(x)I ( F(x ) ) - F(x )) S

lim i+a lira '-I+c lIm

n+0 n+P n+0.
D

o r

lim F (x) m F(x) almost everywhere (a.e.) -n-) ao J ..

and by Lemma 1 we have:

(x) F (x) F(x) a.e.

We have shown convergence of the distribution

function. We now proceed to show the more powerful

result, convergence of the density function estimate to

the true density function.
p

Theorem 2 - The density function estimate, f(x), con-

verges almost everywhere to the true density function,

F'(x) f(x), provided f(x) exists and is continuous. S

19
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Proof -For some point x in the interval (

F(x) -F(x-1/n) G -G

F'(x) li ur i i-i)

lrn AG
x(i) -x(ii1)

f x f~~~-- i-i
(i-(i-i)

AG 4 G AG \
x x kx -x -

AG_____ AG

(X(i1)x(-i2) - x(i-2)-x(i _3)) + +*

( AG AG
x -2x 1 x 1-x(0

Now consider the limit of the estimate. Assume:

urnAG 4G ) 0

Since the limits of both terms exist, this implies:

AG # rnAG
x -x

20



or

F+(x _ ) # F(x)

Which cannot be true since F'(x) exists everywhere by

hypothesis. Thus

lum f (x) - a AG = F'(x) a.e. 

and by Lemma 1

d

l i f (x) - f(x) F'(x) a.e.

The case of a repeated sample value has been lumped

into t.he "almost everywhere" of the above proof. However,

repeated sample points are easily handled by simply re-

placing G with qG (where q is the multiplicity of the

sample point) in the formula for f (x). This has no

effect on the proofs of the above theorems since it occurs

with probability zero for finite samples from continuous

distributions. In real samples we frequently encounter

repeated values due to measurement inaccuracies. The

above proofs still hold as long as the maximum multipli-

city is less than or equal the number of subsamples. For

greater multiplicity it is probably possible to show a

similar result.

We now extend Theorem 2 to cover the case of certain

2 1
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types of discontinuities in the density function.

Theorem 3 - The density function estimate, f(x), con-

verges almost everywhere to the true density, F'(x)

f(x), provided F(x) is continuous, f(x) exists, and we

define f(x) - (f(x_)+f(x+))/2.

Proof - As in Theorem 2 assume we are interested in

the value of f(x) where x C [xi xl),X(i)).

Case I - f(x) has one discontinuity at x 0 where

x( i )ix 0-x (I)

fA = G + / AG -AG-at
f = - .-.. -. .:i!.i

fI x( -x i l x ( l (i-l) x(1-2)

X(2A )G AG )
( -x(I x(1) -x( 0)

All the terms in parentheses above will go to zero as in

Theorem 2 except those containing (x -x leaving:

2& _AG

lim2A -lim -x(

2AG - F(xo)
x -x -0-

But if the derivative at the discontinuity is defined as

the average of the left and right derivatives, then: I
22
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F-(x o ) + F(x o )
lim f " 2 - 2 - F 0(Xo) F+(x 0)

I1

and since no x(j)-x(.l) terms appear in the f

equation, we have:
- .A

li i- f(x_)

That is, the value of the density estimate to the left of

the discontinuity converges to the true density value to S

the left of the discontinuity.

Case 2 - Consider the case where the discontinuity occurs S
in some other interval. If it occurs after x(i ) there is

no effect and we have the same result as in Theorem 2 for

f i" If the discontinuity occurs before x say between

the previous two points, we have:

am f (X) -him - AG +
(i)'-(i-)

lie ( AG AG 0

x (i) -X~ -1) x "i-"-x---2

ha ( G AG
\x(i 1)-X(i2) x(L_2)-'(i-3) 5

where all other terms go to zero as in Theorem 2.

23
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This reduces to:

lim fi(x) F'(x) + F+(x) - 2 lim + x0 )x(tl)-x(i-2) -

F(x 0) + F+(x 0)
F-(x) + F+(x o ) - 2 + F'(x F'(x)

+ 020

This proof extends directly to any finite number of

discontinuities in the probability density function as

long as the value at the discontinuity can be defined as

the average of the values on either side. Jump dis-

continuities fall into this category. The only other

restrictions on the estimator are:

1) The endpoint estimator must converge to the true

endpoint.

2) There must be a finite number of subsamples.

Both of these restrictions are easily met.

Now that we have established the form of the estima-

tor, we must define the following:

1) The number of subsamples

2) The choice of endpoints

3) The choice of plotting positions

Since one goal of this research is to develop a "handi-

off" estimator, these choices will either be made a priori

24
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or the estimator will make the choices based on someJ

sample statistic.

11.3 Smoothing

Aside from the well known problems of numerical dif-

ferentiation, there are two primary contributors to rough-

ness of the density estimate as described to this point.

The first is the existence of artifically large spikes due

to unnaturally close spacing of several points in the

random sample. The second is the tendency of the estima-

tor itself to over (under) estimate the value of the

probability density function at a point when the estimate

at the previous data point was too low (high). The f irst

problem results in a density estimate with "random" peaks

and valleys, while the second tends to create oscillations

in the estimate at a frequency equal to the number of

sample points divided by twice the support interval. The

two problems have been attacked in this dissertation some-

what independently, despite the fact that a solution to

one will affect the other.

After investigating seveial techniques to smooth the

oscillitory behavior of the estimator, including digital

f iltering, frequency domain modifications, and inversion

of the distribution function, a straight-forward averaging

technique was used. Given the data points and an estimate

of the probability density function at these points,7

25



(xi ,f) ; iO,1,...1 ,n+1 1

we form a new data set and corresponding set of density

estimates as follows:

{((yt f(y d ); Yo=X0 ;  yt=(x i-1+xt1)/2; l-l,2,...,n+l;

yn+2 =  xn+l; f(yi)=(f(xit l)+f(x))/2; i-1,2,...,n+l;

f(Yo)-fO; f(yn+2) fn+l }

We then perform a similar procedure to get back to the

original data points:

{(xi,fi); fr=(fi+fi)/2; i=0,1,...,n; fofO ;  fn+lfn+l }

or after simplification:

ft (f - +2f +ft )/4 i-1,2,...,n .: :i

By Lemma I this operation will not affect the convergence

properties of the estimator since this is merely a convex

combination of estimates which all converge to the true 0

dens ity.

The second type of smoothing is designed to desensi-

tize the estimator to anomalous behavior in the data. The S

Quenouille-Tukey jackknife (154) and other Bootstrap

methods (47,48,59) are well suited to this purpose. The

fundamental technique in all of these methods is to gener-

26
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ate estimates with portions of the data and combine them

in a manner which tends to alleviate the problems assoc-

lated with the estimator operating upon the entire sample.

Efron (47), Rustagi (164), and Sweeder (202) have all used

this approach in density estimation. The problem with

these methods is that if one applies the method to a

function estimate rather than a point estimate the inter-

actions between the "subestimates" can slow the conver-

gence of the estimator substantially.

Ideally, every random sample would be of the form:

x i  F-'(Gi) il,2,...,n

where Gi is some plotting rule. Realistically, we are

fortunate if the whole sample, let alone individual data

points, accurately portrays the characteristics of the

underlying density. Subsampling is a tried and proven

technique to reduce the overall noisiness of the density

estimate. The philosophical idea behind subsampling is to

place unnaturally closely spaced data points into dif-

ferent subsamples before the estimate is actually

developed. We have already discussed the theory; the

question that remains is how many subsamples to use.

A Monte Carlo analysis was performed to determine the

"optimal" subsample size. Twenty-five runs were made from

each feasible combination of eight subsample sizes, (5,10,

15,20,23,25,30,45), three distributions, (uniform, normal,

27
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and double exponential), and six sample sizes (5,10,20,40,

100,200). The mean integrated square error (MISE) and

modified Cramer-von Mises (MCVM) integral error (187) were

calculated and results are shown in Figure 3. As a result

of this analysis the optimal points per subsample were

determined to be:

Uniform type distributions ........ 2

Normal type distributions ......... 4

Laplace type distributions ....... 10

Actually fractionally more points per sample were used

based on subsequent studies which showed that, for sample

size 100, the "optimal" number of subsamples for a uni-

form is 46, for a normal is 23 and for a double exponen-

tial is 10. The ten subsamples for a double exponential

is not really optimal in a MISE sense, but fewer sub-

samples were found to yield an unsatisfactorily noisy

estimate while ten subsamples provided an acceptable esti-

mate with little sacrifice in calculated error. For

sample size 100 we selected 10 subsamples as the minimum

number to avoid any potential noise problems.

Since the "optimal" subsample size is not a constant,

we need to be able to discriminate between the classes of

distributions represented by the uniform, normal and

Laplace. A modification to *Hoggs Q (79) statistic wa-s

chosen for this purpose.

28
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Figure 3 -Error As a Function of Subsample Size
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Hogg's Qis given by:

U -(u/(- L)

Where: U average of largest na order statistics

L = average of smallest noi order statistics

Up, LO are similar to Ut, La

The statistic def ined above assumes symmetric distribu-

tions, thus it Is not acceptable for a broad class of non-

parametric estimators, including this one. We are par-

ticularly concerned with densities which are assymmetric

or multimodal. For these purposes we define three pseudo- .

samples:

x~i)= 2x 7 5 -xn+li), X( i) .Xm)

Where:

Xm -sample median

x2 (xm+x())/2

x7 (xm+x(,+))/2

These pseudosamples are:

1) the first half of the original sample reflected

about the median.

2) the second half of the original sample reflect~d

about the median.
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3) the first half of the sample reflected about an

estimate of the 25% point and the second half reflected

about an estimate of the 75% point.

The Q statistic was calculated for the original and

each of the pseudo-samples (QO, Q1 I Q2 ' Q3 ). Based upon

the subsample size study and the relative errors we estab-

lished the following guidelines:

1) When in doubt choose too many points per sub- 

sample. An error in this case will result in the density

maintaining its characteristic shape but showing noise

characteristics.

2) Be absolutely certain that the density is of the

uniform type before choosing the uniform, since choosing

the small subsample size tends tu flatten spiked den-

s ities.

In order to achieve these objectives, subsample size

of about 2 was chosen only when Q0 , Q1 ' Q2, and Q3 were

smaller than the chosen breakpoint value between uniform -

type distributions and normal type distributions. All

four values of Q were used in order to assure that the

probability of a spike in any portion of the distribution

was remote. Normal type distributions were assumed when-

ever Q0, Q1 , and Q2 were in the range between the uniform-

normal and normal-double-exponential breakpoints. In all .

other cases, the distribution was assumed to be "spikey"

and the subsample size, ns, was chosen as follows:

31
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as -mm max(Q0 ,QiQ2 ,Q3 ) - ' -n)+ dns -min Q. .(rd -nn) + nn ,nd

where:

Qn theoretical Q for normal distribution

Qd theoretical Q for double exponential distribution

nn - normal optimal subsample size

- double exponential optimal subsample size

After calculating the subsample size, the calculated

value was bounded on the high side by n/2 points per sub-

sample, and on the low side by 2 points per subsample. t

This was based on empirical evidence that it was never

advantageous to have less than two subsamples and on the

inability of this estimator to calculate a density

function for a sample of size one.

The values used for the breakpoints were chosen (based

upon c = .04 and 1- .5) as: L

Qun m min(1.45 + .0075n, 2.31)

Qnd = min(l.9 + .01n, 3.12)

which are approximate linear fits to the optimal numbers

determined by Rugg (163) limited by the average population

values for the distributions. These breakpoints are not

critical due to the method of using pseudo-samples and

based upon the relatively small variations in subsample

32
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size. The values of population Q's used were:

Qd 3.53

n 2.70

Q - 1.92
US

This method resulted in the identifications shown in

Table 1. These percentages are based on a Monte Carlo

analysis of 1000 cases with sample size 100.
I

Table 1 - Correct Identification Percentages (n-100)

Actual Distribution

Uniform Normal Laplace

Uniform 95 1 0 P

Identified Normal 5 73 0

as: Intermediate 0 26 32

Laplace 0 0 68

S

As the sample size decreases there is a tendency for

the sample to look more like a sample from a uniform

distribution. This is reflected in Table 2 which is

similar to Table I but for sample size 10. In this case

there is no intermediate subsample size due to the small-'. -

number of subsamples in all cases.
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Table 2 - Correct Identification Percentages (n-10)

Actual Distribution

Uniform Normal Laplace

Uniform 76 34 24
Identified

Normal 21 51 42
as:

Laplace 3 15 34

The amount of smoothing may be adjusted by the user if

prior knowledge of the underlying density is available.

However, one may easily be led into the trap of over-

smoothing in order to obtain a "pretty" density while

simultaneously forfeiting some accuracy.

11.4 Support Estimation

For practical purposes probability distributions can

be considered to have finite support, despite the fact

that they are often approximated, for mathematical con-

venien.ce, by distributions with infinite support. When

estimating a density function, the estimate can be quite

sensitive to variation in the estimated endpoints. This

is particularly true for platykurtic distributions.

Consider, for example, the uniform distribution shown in

Figure 4.
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Figure 4 -Sensitivity to Support Estimation

The endpoint estimate is less critical for leptokurtic

distributions (where both tails are long) since the bulk

of the density function Is away from the endpoint and

unlikely to be greatly affected by small variations.

Endpoint selection is avoided In moat non-parametric

d e ns ity esat im a t ion t ec hn iq u es b y esat im at inag

f(xIX(I ).x<x(,)) .Alternatives include various extrapo-

lation rules and methods of estimating percentage points

of order statistics. Hall (64) estimates the distribution

of the first and last order statistic. Unfortunately,

this approach is only possible with large samples, since a

sample of first order statistics must be generated in

order to start the estimation procedure. Bootstrap

techniques (76) have been proposed for the endpoint esti-
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7 .

mation task, but they frequently estimate support inside

the sample bounds or well outside the actual support for P

samples from distributions with finite support (28,29).

The shape of the density in the vicinity of the first

or last sample points is related to the distance from the P

extreme order statistic to the endpoint. While shape

estimators of various sorts exist (kurtosis, Hogg's Q,

percentile ratios) most are based on the entire sample

thus somehow averaging the two tail shapes. The implicit

assumption is that the distribution is symmetric. In

addition, some of these statistics are quite sensitive to P

sample variations.

A thorough investigation was performed on a series of

methods which adjust the linear extrapolation of the II

sample distribution function (based upon some plotting

rule) to account for the estimated shape of the distri-

bution tail. Although several of the methods developed .

showed a capability to predict an endpoint more accurately

than a linear extrapolation, they were occasionally (less

than five percent of the cases tested) drastically in

error and did not, in general, perform well for small

samples. The reason for lack of robustness and poor small

sample performance was the paucity of information in the

few sample points in the tails. The methods attempted

will be described briefly as. they may have some applica-

tion in cases where sample sizes greater than one hundred

36
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are available. For this estimator the new endpoint
Vt

estimation techniques did not seem to significantly

improve the overall performance , so a modified linear

extrapolation method was used to fix the endpoints. (Only -.

the left endpoint, x( 0 ), estimate will be discussed. The

right endpoint, x(n+l), is handled symmetrically.)

The methods investigated were:

1)

x(o) :- 2x(1 ) - x( 2 )

Chooses as an endpoint a point the same distance to the

left of the first order statistic as the second order

statistic is to the right. This method has the advantage

of simplicity but is extremely sensitive to sample vari-

atiori.7. In addition, it tends to give poor results for

distributions with light, long tails and for those with
IO

tails heavier than the uniform, for example a U-shaped

Beta.

2)

x(o) x(m) - (x(m)-x(1 ))Gm/(Gm-Gj)

Choose as the endpoint a linear extrapolation of the

points (x(m),Gm) and (x( 1 ),Gl), 1 < m < n/2. This method L

reduces the sensitivity of the estimate to sample

variations but suffers from problems similar to those of

method 1.
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3)

m n/2

x(O) k, (R-X(i)) + k 2  (S-x(i)).
i-i i=1"-i

R- sample median "'";"

Chooses as the endpoint a point based on two averages

relative to the sample median. This method modifies

method 1 to make it more robust but still suffers from the

problem of a linear estimator trying to fit a non-linear

function. Method 3 also requires a relatively large sample

to give reasonable results.

4)

X(o) = (1+kR)x(1 ) - kRI O<k<l

m n/2
R = (n/2m) (I-x(i))/ I S-x( 1))-.

i=I i-l. im.

Chooses as the estimate a linear extrapolation weighted by --

the function R which is a measure of the shape of the

distribution similar to Hogg's Q statistic. This method

is more versatile since it adjusts the slope of the extra-

polation method based upon the sample. Unfortunately, the -

R statistic was found to be sensitive to sample variations

and is not a single valued function of actual endpoint

location.

5) x(o ) - quadratic least square fit to the points

38
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x(I 1) 1 (x(2),G2 , (x(3),IG 3 )  '

using the equation:

G(x) = a(x - x(0))2 + b(x - x(0))
S. 

,..

This method is a quadratic fit to the data subject to the

constraint that the resulting equation reaches a minimum

at the point (x(o),O). The method is quite good for

distributions with long tails but was poor for uniforms,

exponentials, U-shaped betas, etc. - "

6)
x(0) (x(O)l - K(X(mi-X(l)))P-

in-k
P"- exp{ . (X(i+k)-x(t+l))/(x(t+k-l)-X(i))]} ) --...

This method calculates a more robust percentile ratio, Po,

and adjusts a linear extrapolation based on the value of

P'. While this method appears to have merit, in practice

the value of P' was found to be non-unique for widely

varying distributional shapes, and quite sensitive to

sample variations due to the division and exponentiation

operators.

7) Let

h[(0 - (0 )/(x(M)-x(1))] -P"

then

x(0 ) x X(0)2 (x(m)-x(l))h (P" )

39



- - -.

Where x(0)2 x(0 ) as determined by method 2. This method

determines the function h empirically for a series of beta .

distributions with various parameters and uses the inverse

function to estimate the endpoint. The non-uniqueness of

P' and its sensitivity to sample variations led to poor

estimates of x(0 ).

8) This method was the same as method 7 except P' was

replaced by:

S = (m/ ln(n)) (X(m+)-X(i))4 /[ (X(m+l)X(i)) 212

The method is inspired by the sample kurtosis with an

empirically defined scaling factor, m/ ln(n), included to

reduce sensitivity to sample size and the fractional por-

tion of the sample, m/n, used in the calculation of S.

Method 1 was used in this estimator (modified as

described below) for the following reasons:

1) The ability to generate a density estimate for

small samples was desired. All other endpoint estimation

schemes require larger samples than method 1 to give

reasonable results.

2) The method is simple with no subtle pitfalls

and gives reasonable results which do not contradict known

facts.
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Philosophically, one feels that the entire sample,

rather than a subsample, must be "better" for approxi-

mating endpoints. The problem with picking endpoints and

-then using the same selected values in the calculations of

each of the subsample densities is that too much prob-

ability tends to be lumped in the tails. On the other

hand, allowing each subsample to determine its own end-

points tends to spread the estimate over a wider support

which adversely affects estimator performance for

densities which do not tend to zero as the endpoint is

approached. A compromise solution was developed experi-

mentally which seems to eliminate both these problems.

Define:

x( 0 ) X(n+l) = estimates of endpoints based upon

the entire sample

X(O)i x(n+l)i = estimates of endpoints based upon

the ith subsample

(o) X(n+1)i = endpoint estimate used in calcu-

lating density from the ith subsample

Then

X(O)i = max((O)i,X(O))

Maa

xa +l I  " min(X(n+l)i'x(n+l) ) -. -

As can be seen in Chapter IV.2, this endpoint estima-

tion technique, when applied to small samples, results in
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an excellent approximation to the I/n and (n-1)/n

percentage points of the true distribution by the esti-

mated distribution. Thus the errors in the endpoint esti-

mates due to this method are insignificant for most appli-

cations other than approximating points far out in the

tails of the distribution.

11.5 Plotting Position Selection

Plotting positions are defined as a set of cumulative

probabilities associated with a set of ordered observa-

tions. Their purpose stems from the use of probability

paper (as far back as 1896) to try to predict distribu-

tions of observed random variables. They were commonly

used by hydrologists to analyze flood data (74). Generally

an attempt is made to approximate some point in a distri-

bution by choice of plotting position, for instance

E[ F(xi)].

As Harter (69) points out in his excellent summary of

the history and use of plotting positions, much of the

problem regarding the choice of plotting positions is due

to the fact that

F[E(xi)] E E[F(xi)) - i/(n+l)

except for a uniform distribution. The median ranks

choice of plotting position is attractive for the case of

a single point, since for monotonic functions the median

42
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of the function is the function of the median. Unfortu-

nately this is not true for functions of more than one

random variable.

Table 3 shows some of the historically more popular

choices of plotting positions. A small amount of empir-

ical investigation of many of these plotting positions was

done but there was no obviously better choice for the

determination of the density estimate. Harter (69) gives

Table 3 - Plotting positions of the ith Order Statistic

F(x) Description

1. i/n value of the empirical
distribution function (EDF)

2. i/(n+l) mean rank

3. (i-1)/(n+l) mode rank

4. (i-.3)/(n+.4) median rank (approximation)

5. (i-.5)/n midpoint of the Jump of the EDF

6. (n(21-1)-l)/(n-1) average of mean and mode ranks

7. (i-.375)/(n+.25) efficient approximation for the

normal distribution

8. (i-a)/(n-a-b+l) Blom's plotting position (15)
a,b< I

9. (i+a)/(n+b) a more general plotting position

-1<a<b<-

43
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a detailed analysis of choices of plotting rules -and that

will not be repeated here. For the purposes of this work,

the approximate median ranks:

Gi (i-.3)/(n+.4)

plotting positions were used. This is the same approach

taken by Sweeder.

While the plotting rule does not in itself greatly

affect the estimate, in conjunction with subsampling it

does. The reason for this is that equal areas are forced

into unequal intervals at the ends of the subsample.

Figures 6 and 7 illustrate this problem. In Figure 5 we

have a sample shown along with the density generated with

no subsampling. If we subsample twice we obtain Figures 6

and 7 which are averaged to get the smoothed estimate,

Figure 8. Note that the subsamples and the resulting

estimate tend to have peaks near the endpoints. This is

due to forcing the estimate to generate too much area at

the ends. For example, in subsample one, approximately

one-fifth the area is generated between x(O) and x1,

while this interval is only one of the nine defined by the

endpoints and sample points. Sweeder's estimates fre-

quently showed a characteristic hump near the endpoints,

which was due to this phenomenon.

A solution to this problem is to reapportion the area

generated between the points of the subsample. A new set
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of plotting points are chosen such that the values of Gls

and Gns, the first and last subsample plotting positions,

are equal to the plotting positions for the corresponding

-point in the entire sample. The plotting positions for

the rest of the subsample points are determined by simply

dividing Gls-Gns by the number of intervals remaining.

This has the result of making the estimated subsample

probability density function values more closely represent

the entire sample density function in the tails, while

taking advantage of the smoothing properties of sub-

sampling throughout the rest of the support. Since this

approach is equivalent to selecting a different set of

(assymetric) plotting positions, the convergence proper-

ties of the estimator remain unchanged.

11.6 Example Problem

The following example illustrates the use of the new

density estimator. Data used represents the lifetimes of

eight grinding wheels and are extracted from Table 11.10

of Kapur and Lamberson (88).

X - (22,25,30,33,35,52,63,104)

First we will calculate an estimate with no subsampling or

smoothing to illustrate the technique. Following this we

will calculate the smoothed estimate as described in the

earlier portions of this Chapter.

49
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L The plotting positions are:

i-.3
S (.0833 ,.2024 ,.32 14 ,.4405,

.5595,.6786,.7976,.9167)

Endpoints are calculated as:

x 0  19 x 9 = 145
I

The forward pass:

fo 0

fjAxl/2 .0833 a> fl .0238

f2 .0238

f3- .0238

f .0555

f5 .0635

f < 0

So we set f6 - 0

And recalculate f 5 - (.476 - f 4 (x 4 -x 3 ))/(x5 -X 3 ) - .0163

Continuing f 7 -. 0216

f 8 < 0

So we set f8 - 0

And recalculate f 7 
= .0092

fg - .0041 9o

We now calculate the backward pass:

f* 0

f 8 Ax 9 /2 = .0833 => f 8 
= .0041

50
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* A

f 7 M.0017J

f- .0199

f( 0 f 0iiI
Recalculate f 6 - .0163

f4 .119

f< 0 => f3  0

Recalculate f4 .0952

f2 .0476

f- .0317

-o .0238

Averaging the forward and backward passes yields:

f-(.0119,.0436,.0357,.0119,.0754,.0082,

.0082,.0055,.0021,.0021)

The result of this estimation Is shown in Figure 9. Note

the amount of noise in even this simple estimate.

We now calculate the "optimal" number of subsamples as

two and obtain the smoothed estimate.

Y1 2 (2,30, 35,63)

Y2 (25,33,52,104)

-i max(19,14) -19 - min(91,145) -91

-max(19,17) -19 y 5 - min(145,156) -145

The first subsample is augmented with the endpoints

(19 2 2 ,30 ,35 ,6 3,91)

51
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Figure 9 -Example Density Estimate Before Smoothing
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Plotting positions are calculated

G- .7/8.4 =.0833 G4 =3.7/4.4 -. 8409P

G2 =(G 4 +2G1 )/3 =.3358 G3 =(2G4+01)/3 -. 5884

Forward pass is calculated as before:

fl =.0555 1

f- .0076

f3 .0934

f4( 0 -> f 4 -0

Recalculate f 3 -. 0292

f .0114

Backward pass is now calculated:

5 0

f4 .0114

f3 .0066

f2 .0944

f< 0 f> 1 0

Recalculate f2  .0763

fo .0555

The first subsample estimate Is given by the pairs:

(19,.0278) (22,.0278) (30,.0420)

(35,.0179) (63,.0057) (91,.0057)
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Performing similar calculations for the second subsample

we obtain the pairs:

(19,.0055) (25,.0476) (33,.0156)

(52,.0086) ( 104,.0021) (14 5,.00 2 1

We now smooth the estimates using

f (fi... + 2f1 + fi+ 1 )/4

to obtain, for the first subsample:

(19,.0278) (22,.0314) (30,.0324)

(35,.0209) (63,.0088) (91,.0057)

and for the second subsample:

(19,.0055) (25,.0291) (33,.0219)

(52,.0087) ( 104,.0037) ( 145,.0021)

Note that at this point the density estimates no longer

integrate to one since the smoothing operation is not

weighted by the sample Intervals. This will be corrected

after averaging, but first we must interpolate within each

sample to find the values at corresponding x coordinates.

The first subsample provides:

(19,.0278) (22,.0314) (25 .0318) (30,.0324)

(33,.0255) (35,.0209) (52,.0136) (63,.0088)

(91,.0057) (104,0.0) (145,0.0)
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No~e that there is additional area added implicitly

between the points with x coordinates of 91 and 104. This -,

provides additional smoothing for the transition between

subsample estimates. -- 4

The second subsample provides: 0

(19,.0055) (22,.0173) (25,.0291) (30,.0240) -

(33,.0219) (35 ,.0205) (52,.0087) (63,.0076)

(91,.0049) (104,.0037) (145,.0021)

Averaging the two subsample estimates we obtain:

(19,.0167) (22,.0244) (25,.0305) (30,.0282)

(33,.0237) (35,.0207) (52,.0112) (63,.0082)

(91,.0053) (104,.0019) (145,.0011)

Integrating, we see that the total area under the

curve is 1.08815 so we divide each of the pdf estimates by

this value to obtain our final estimate:

(19,.0153) (22,.0224) (25,.0280) (30,.0259)

(33,.0218) (35,.0190) (52,.0103) (63,.0075) I . .

(91,.0049) (104,.0017) (145,.0010)

Figure 10 shows this estimate. Also shown is the Weibull ""

fit, determined using Weibull probability paper, given by

Kapur and Lamberson. Since the two density estimates are

clearly different, the natural question is which is

better. There is no answer to this question, however we
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Figure 10 -Example Density Estimate
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can calculate the likelihood of the sample for each of the

distributions (assuming independent sample points.) When
0

we do this the value for the Weibull estimate, LW, and the

-value for the new estimate, L, are:

LW = 9.5 X0 2 1 0

L 8.4 x 10 - 1 6

Clearly this particular sample is much more likely to be

from the new density estimate. It is also interesting to

calculate the likelihood of this sample coming from a

uniform distribution, since, for very small samples, a P

uniform distribution tends to maximize the likelihood.

The likelihood for a uniform distribution is:

LU < 4.9 x 10 - 16

One other question remains along these lines and that is

the question of what the subsampling and smoothing have -

done to the likelihood of the sample. If we calculate the

likelihood of this sample for the unsmoothed estimate with .-

no subsampling we obtain: _

L = 1 . 1 x 1 0. 
. -

The significance of these numbers is subjective. They are

presented more as a matter of interest than as a claim for

the quality of the new estimator. ".
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III. Quality of the Estimator.

Now that we have developed the new non-parametric P I

estimator, an evaluation of the quality of this estimator

is required. The approach taken in this chapter is to

obtain Monte Carlo estimates of the accuracy of the new

estimator and compare these results with existing density

estimators. Wegman (226) provides a discussion of and

results from several other non-parametric density 0

estimates. Tapia and Thompson (203) discuss properties of

some other estimators and Sweeder (202) also provides some

comparisons. In order to compare with these other

results, twenty five Monte Carlo repetitions using samples .

of size one hundred were used in this study. The results . -

presented here are consistent with Monte Carlo studies

using one hundred repetitions.

The measure of merit most frequently used in these -"-

comparisons is Mean Integrated Square Error (MISE) or fre-

quently MISE is approximated by the average squared error

(ASE). The following measures of merit were considered as

alternatives in this study: 0

I) Anderson-Darling Integral

2) Modified Anderson-Darling Integral

3) Average Square Error

4) Cramer-von Mises Integral

5) Modified Cramer-von Mises Integral
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6) Kolmogorov-Smirnov Integral

7) Modified Kolmogorov-Smirnov Integral

8) Integrated Square Error

9) Integrated Absolute Error

10) Maximum Absolute Deviation

Although all of the above measures gave different num-

bers, relative comparisons indicated that only Maximum

Absolute Deviation varied significantly from the others.

This was true primarily at the points of discontinuity in

the density function. Thus, for the purposes of this

study, Average Square Error (approximately equal to MISE)

is used when comparisons are made with other density .-. 2

estimators, and Integrated Absolute Error is used for two

sample tests since the numbers retain more of an intuitive

feel, at least to the author. Based upon results of

investigations of those ten measures of merit, the "

research results would not change substantially if any of

the first nine measures were used and possibly not even

for the last. For derivations and definitions of these

error measures see Sweeder or Sahler (165).

Both the estimated probability density function and

cumulative distribution function are compared with other

estimation techniques. Tables 4 and 5 show the results

of these comparisons. The results of the density function

comparisons indicate that the new estimator is clearly -Z

superior for platykurtic distributions, equal to the best
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previous estimates for mesokurtic distributions, and

slightly inferior to Sweeders for leptokurtic -

distributions. A small number of cases have been run in

-each of the distribution classes with Cauchy, exponential,

and various beta distributions. These additional runs

show that uniform, normal, and double exponential distri-

butions are indeed representative of these other distribu-

tions.

The plots shown in Figures 11 to 16 demonstrate graph-

ically the ability of the estimator to fit various

densities. The normal, uniform, and double exponential rw 2

plots show the maximum likelihood estimate (parametric)

for the random sample. Actual data show that the non-

parametric estimate has smaller MISE than the parametric

estimate for the normal 31% of the time for sample size

100. These plots are the best results obtained from one

hundred random samples from each distribution. The

following plots, Figures 17 to 21, are the best results

obtained from ten samples, each of size one hundred, from

the distributions shown.

The results for the distribution function are quite

similar, showing consistent improvement over the empirical

distribution function, and errors comparable to the ex-

tremely good values achieved by Sweeder. Note that the

estimator was "optimized" to provide a good density

estimate. Improvement in the estimate of the distribution

62
~*.*.. ... .

"....................,.°.



~-C!

00

63I



0

0S

0 0

I W'

C,,
hihi

g-d ~ ~n o SN~

64a



ad 1-4
04 ca

64 ca
0-4

ad z

'-41

00
ra~9

.Of-DNR aIS~

-so O~C/) 65

z 47



1--4

0 Z0

i-G4

-16 -- d---

iolofl IIpZ

66'



0.0

CdC

~~4)

0.4

tto

OAr

. . . . 4

N'-4fi II N (

z 67



-.4 
9

frw 04
Iab300 z

'441

41

00

a1

681

.. er



41

af

46-

aol~l @3i~a

69@

. . . . . . .. . . .
. . . . . . .. . . . .



-9

9S

-94

0
C-4

IIn NT

700



0 t0

L 0N
9 14

00

Nolloflil IIS-4

71a



- -.

00
in t0

-4'
toS

N01IOMI IISN3

72J

% % % -k



IIV

ob

41

'cc;'

C!4

0.

NOIXOfill IISN0

730



function is possible if one does not worry about the den-

sity function. During the development of this estimator,

it appeared that fewer smoothing operations would improve

the quality of the distribution function estimate slightly.

Figures 22 to 24 show the actual, estimated and

empirical distribution functions corresponding to the

estimates shown in Figures 14, 15 and 16 respectively.

The improvement over the empirical distribution function

is clearly evident In these plots. Also notice the

smoothness of the estimated distribution function.
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IV. Applications.

This section deals with ways of applying the new

-estimator derived in the previous chapter. The first - "

application, distance estimation, is included here because

one frequently wishes a simpler formulation for the den-

sity function in order to perform some other application.

The small sample analysis section demonstrates the use of

the new distribution function to perform a task which is

poorly accomplished by the more traditional distribution

function. The two sample test uses the estimated density

directly to improve the power of an existing test. Many

more applications are possible, and a few of these are

discussed in the section on other applications.

IV.i Distance Estimation

One of the problems with non-parametric estimators is

the difficulty in using the resultant estimate. This is

due to the form of the estimator and the number of

"parameters" required to specify which of the members of

that form is the estimate. For instance, in order to

completely specify the proposed density estimate at least

2n+4 "parameters" and possibly as many as 3n (depending on

subsample endpoints) are required. It would be useful to

reduce the number of parameters by converting to another

functional form. A logical approach to this is to try to

F" 78
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convert the non-parametric estimate to one member of a

family of parametric distributions. This has been accom-

plished through minimum distance estimation.

In general, the minimum distance estimate is a set of

parameter values minimizing some distance function defined

in terms of the hypothesized probability structure and the

sample generated estimate. Originally developed by

Wolfowitz (234), minimum distance estimation attempts to

match the entire probability structure (rather than the

moment structure) of the data with a specified model.

Minimum distance estimators have been proposed by Beran

(12), Parr (135), Daniels (35) and others (See 136) and

have been shown to possess some significant robust charac-

teristics. However, most of the Monte Carlo investiga-

tions of these estimators have been confined to distribu-

tions close to the normal.

A series of logical candidates for the distance

estimation task was considered. These include:

1) General Exponential Power Distribution. This distri-

bution models symmetric data which can be extremely lepto-

kurtic or platykurtic. Extremes of the distribution occur

at the uniform model, where p - infinity, and at the

double exponential, where p - 1. Moderate tail lengths are

a function of the shape parameter, p. For p - 2, the

distribution becomes Norma.l. The probability density

function is:
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* rr

f(x;p,., o) [ [pg(p)/2r(l/p)qlexpf-lg(p)(x-p)/lrP

g(p) - [r(3/p)/r(l/p)]
5

-o < X JA < 0 0 < a < cc < p < .OD''- -

2) Generalized Beta Distribution. This distribution -

models a wide variety of shapes over a bounded interval,

Ia,b]. Symmetric, asymmetric, and U-shaped distributions

are possible. The uniform model is a special case. The P

wide variety of shapes and finite support (which always

occurs for "real life" data) make this family especially

attractive. The fact that common densities such as the

Normal, Exponential, etc. are not included in the family

is a detriment. The probability density function is:

f(x;p,q,a,b) - (x-a)P-l(b-x)q-1/[B(p,q)(b-a) p + q -l.

B(p,q) - r(p)r(q)/r(p+q)

a < x < b 0 < p <c 0 < q < 0

3) Generalized Gamma Distribution. This distribution

models asymmetric data on the half open interval [c, ).

An important distribution in life testing, the generalized

Gamma includes the negative exponential as a special case.

The density function is:

f(x;a,b,c,p) p(x-c)bp-lexp(-[(x-c)/aJP)/abPr(b)

0 < c < X < 0 < a,b,p < 

so
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4) Generalized t Distribution. This distribution models

symmetric data with moderate to extremely leptokurtic

distributions. As the degrees of freedom parameter, n,

-approaches infinity, the distribution approaches the

normal. For n-l, the distribution reduces to the Cauchy.

The general density function is:

f(x; p,c,n)- [(n+l)/2][l+(x-I) 2 /2n]-(n+l)/2/r(n/2)a(wn).5

-0 < x, 1 < 0 < a < oo I< n < co-

5) R-S Distribution. This distribution was originally

developed by Ramberg and Schmeister (155) to generate

random variates. It is a generalization of Tukey's lambda

function (205) and can be used to model a wide variety of

data shapes. The probability density function is given in

terms of the percentile function, R(p).

f(x;p,a,b,c,d) = f(R(p)) (cpc-l+d(l-p)d-l)/b

R(p) = a+(pc-(1-p)d)/b

-oo < a < x <o -oo < b,c,d < cc 0 < p < I

6) Generalized Life Model. Developed by Moore and

Bilikam, this model includes as special cases the Weibull

and the Raleigh distributions. The probability function

is given by:
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f(x;a,b,g(x)) = bg'(x)(g(x))b-lexp[-(g(x))b/a]/a

g(x) ER limr g(x) 0 lim g(x) cc
x-> 0 x-> ao

g(x) strictly increasing 0 < x,a,b < -"

The Generalized Beta Distribution was chosen as the

family to consider for parameterizing the estimate. The

distance measures considered were those discussed in

Chapter III, and approximate MISE was chosen as an accept-

able measure based upon tests of ten samples and the

variability of the measure. Both the estimated prob-

ability density function and estimated cumulative distri-

bution function were evaluated in the minimization scheme,

but the probability density function based method was

eliminated due to convergence problems in the optimization

procedure and the frequency of local minima.

The distance measure was minimized using the routine

ZXMIN on the International Mathematical and Statistical

Libraries. For each sample three starting points were

used which were chosen as the minimum distances out of a

grid of eighty-one points. The Beta parameters were

bracketed by choosing the largest spike in the non-para-

metric estimate of the density and adjusting the sizes of

p and q by the ratio of the number of points to themax max ,,,''.

left of the average of x and x to the number of

points to the right of the average.
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R Points to Left of Average
Points to Right of Average

B max J/(n+l)
='- x(i)-x(i_])

Then

Pmax max(3,B/R)

q max(3,BR)

Pmax

The points for evaluating the distance function were then

chosen as:

P i 'Pmax/10 i =...,9

qi = iqmax/10 1,2,...,9

The distance measures were calculated at each of the

eighty-one starting points and the best three points were

chosen for starting a modified gradient search. If two of

the three starting points did not converge to the same

Beta parameters, additional starting points were chosen.

If the parameters converged to some point outside Psax or

q then additional points were checked to investigate

the possibility of a local minimum.

83
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T abl1e 6 -Average square error for basic and
parameterized estimates, n-100

Average Square Error

Distrbutio pdfCDF

Basic Beta fit Basic Beta fit

Cauchy .13 135.00270 .00301

Laplace .0059 .0355 .00151 .00906

Normal .0012 .0003 .00054 .00022

Uniform .0048 .0041 .00104 .00042

Beta(.6,.8) .0061 .0020 .00181 I .00127

Beta(2,3) .0010 .0006 .00054 .00038

Results of the distance estimation using a beta dis-

tribution are shown in Table 6. For beta family and

distributions with lighter tails than the normal the

method resulted in acceptable estimates. For distribu-

tions with heavy tails, double exponential, Cauchy, etc.,

the method results in a poor fit. This is reasonable

since the beta distribution has lighter tails than the

normal even as the support becomes very large.

I r The distance estimation results are based upon medians

of twenty-five minimum distance fits to each of the dis-

tributions. The small number of runs was a result of

difficulties in getting the minimization procedure to

p converge and the large number of local minima, particua-

larly with the more leptokurtic distributions.
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IV.2 Application to Small Sample Analysis

There are many instances where the cost of obtaining a

single sample point of a random variable is extremely

high. This is particularly true in instances of testing

or analyzing complex physical systems, for example air-

craft stress analysis. In these cases, one is sometimes

asked to make an estimate based upon a mere handful of

data points. The estimator we have developed can be used

as a variance reduction technique in cases such as these.

As a theoretically interesting example, consider the

determination of r by a Monte Carlo technique. If we

consider a circle inscribed within a unit square as in

Figure 25 and generate uniformly distributed random ?:7:
variable pairs (x,y) on 10,11 x (0,11, then the

Fiur 25 Goer-o aclto f7
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probability of any (x,y) pair lying within the circle is

equal to the ratio of the circle-s area to the square's
S

area or 7/4. If we wish to calculate an estimate of 7r we

-may do so by taking the ratio of hits, (x,y) pairs within

the circle, to total pairs generated and multiply by 4.

Pairs in Circle x4
Total Pairs

Another way of looking at this problem is to define a

new random variable

Z X X2 + Y2
z. +

then:

- 4P(z < 1) - 4Fz(1)

If we calculate the distribution of z we may estimate r in

this manner.

Figure 26 shows the results of estimating r by the

Monte Carlo method and by the distribution function

method. The curves shown for the distribution function

method are based upon Monte Carlo analysis with one S

thousand repetitions at each sample size (2,4,5,10,20,

40,100). The curves for the Monte Carlo method are deter-

mined using binomial probabilities. In addition, the per-

centage of times the distribution function method beat the

Monte Carlo method was calculated. Table 7 presents these

results.
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This analysis would tend to indicate that for this

type of problem one would wish to use the distribution

function method for sample sizes less than about fifty

-rather than Inferring Information directly from the sample

itself. This is certainly true when sample sizes get down

to about five. Note that If a larger number of samples is

available the Monte Carlo method is preferable when a

single point in the distribution is sought.

Table 7 - Distribution Function Method Compared to
Monte Carlo Method.

t

Sample Percent Equal to or Better
Size than Monte Carlo

2 97

4 82

5 72

10 58

20 54

40 54

100 41

IV.3 Percentage Point Estimation

A natural extension of the case presented in the last -

section is the estimation of a percentage point of a

distribution. Figures 27 and 28 shows the 952 confidence

intervals for the error in estimating percentage points of

[. ~88"'"
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the uniform, normal, and double exponential distributions.

The errors shown are actual squared error calculated

from 100 random samples of sizes ten and 100 from each of

the distributions. The horizontal axis data is first

scaled to make F-I(.99) - F-I(.01) - 1 for each distribu-

tion. Then the plotted values represent:

[F-l( /il00)--(I/100)12 i-i ,2,... ,99

Ninety-five percent of the errors are less than or equal

to the curves shown. In all cases, the median error was

approximately one order of magnitude smaller than the 95Z

confidence bound.

Although the errors appear to decrease as one esti-

mates a point farther out in the tail of a distribution,

this is not entirely accurate. For distributions with

infinite support the errors increase again as a smaller

percentage point is estimated. This is due to the inher-

ent finite support of the estimator. A reasonable guide-

line would be that the sample size should be, as a mini-

mum, approximately equal to the inverse of the desired

percentage point. That is, if we wish to estimate x.O01

we should start with a sample size of about 1000 or

greater points. The increase of accuracy near the extreme

percentage points apparent in Figures 27 and 28 is due

primarily to the accuracy of the endpoint estimate.
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IV.A Two Sample Test

The classical two-sample tests take two random samples

from independent distributions and test for some simi-

larity (equivalence, same location, same scale) in the

underlying distributions based on the sample. The usual

approach is to combine the two samples into one and use as

a test statistic some function of the ordering of the

combined sample. Some popular tests of this genre are the

Wald-Wolfowitz test (218), the Smirnov test (190), the

Cramer-von Mises test (56), the median test (56), and the

Mann-Whitney test (117). Many other two-sample tests

exist, but none use the samples independently to evaluate

a probability density function and then use the resultant

density estimates in testing the null hypothesis. There

are two good reasons for this. The first is that theo-

retical distributions of the test statistic are virtually

impossible to derive due to the complexity. The second is

that the noisy properties of a density function estimate

can tend to obscure the true underlying density unless the

estimator is very good indeed. The first problem can be

somewhat overcome by using Monte Carlo methods to develop

the critical values of the test statistic. The second has

not, to this author's knowledge, been previously success-

fully attempted.

The ability to generate a density function which

accurately represents the sample's underlying density
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suggests that a test of the hypothesis that two samples

come from the same 'listribution might be more powerful if

performed upon the densities rather than on distribution

functions. Power studies on two-sample tests are not

generally available in the literature, mostly due to the

difficulty in picking one of the infinite alternative

distributions to test against. The two-sample Smirnov

Test is generally felt to be as powerful as any (56) of

the popular two-sample tests and will be used for compari-

son purposes in the development of a new two-sample test.

The uniform, normal, beta (1,3), beta (.5,.5), and

Laplace distributions, all with zero mean and unit vari-

ance, were used as representative distributions in the

development of the critical values. One hundred estimates

were made from samples of sizes ten and one hundred from

each distribution. The test statistic used was the inte-

grated absolute error between all possible combinations of

two estimates. This resulted in 4950 samples of the test -

statistic for each distribution, a total of 24750 points.

The null hypothesis to be tested was:

HO F0  F1  or f0  fi

against the two-sided alternative hypothesis:

Ha FO F, or f0
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Tests using both the cumulative distribution function and

the probability density function were developed and comn-

pared to the Smirnov test applied to the same samples.

The critical values of the test statistic are given in

Table 8. The cumulative distribution function test

Table 8 -Critical Values of the Two-Sample --

Test Statistic

Significance DTetpfes
Leveln 10 n 10 n 1 n 10

.001 10.258 .07861 1.3814 .01130

.005 10.185 .07707 1.1618 .01058

.01 10.043 .07601 1.1294 .00988

.05 4.1517 .03263 .6989 .00711

.10 2.6214 .02067 .4915 .00484

.15 2.1287 .01339 .3467 .00436

.20 1.7304 .01108 .2975 .00400

.25 1.4039 .00953 .2491 .00375

.30 1.0826 .00792 .2041 .00352

.35 .8904 .00654 .1179 .00336

.40 .7795 .00536 .1609 .00319 -

.45 .6610 .00467 .1454 .00305

.50 .5487 .00410 .1291 .00292
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statistics are calculated using the same results as those

used in the pdf critical value computations. They are

given primarily to allow a direct power comparison with

-the Smirnov test for this particular set of samples.

The critical values in Table 8 were used in a power "

study gith all possible combinations of the chosen

samples. This resulted in 10000 samples from each pair of

dissimilar distributions. The power of the test was cal-

culated by taking the proportion of samples correctly

rejected as failing to meet the hypothesis. Tables 9, 10,

11, 12, 13, and 14 show a comparison of the powers of the

three tests.

The power studies indicate that:

1) The test based on the new probability density

function is consistently more powerful than the cumulative

distribution function based test developed here.

2) The Smirnov test is slightly more powerful than

the probability density function test for uniform alterna-

tives.

3) The test based on the probability density func- S

tion is clearly superior for differentiating a normal from

a double exponential sample.

Figures 29(a) and (b) show the distribution and den-

sity functions of the distributions used in the power

studies for this test. One could argue that the normal

and double exponential are more clearly distinquishable in
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the densities. This is not as true for the uniform. This

could be the reason for the improved power of the prob-

ability density function test over the Suirnov test.

The power differences might lead one to develop a two-

sample test which mixes the results of both the tests dis-

cussed in this chapter to obtain an "optimal" test statis-

tic. This "optimal" statistic would be a function of some

shape statistic, such as a modified Hogg's Q or a modified

kurtosis. It might also be a function of sample size,

although the sample size appears to have only a small

effect.

The two-sample test developed in this chapter shows

clear superiority over an effective classical test under

some circumstances. Additional research in this area is

discussed in the Summary and Recommendations.

IV.5 Other Applications

Sample distribution functions have long been used in

the areas of non-parametric goodness-of-fit tests, two

sample tests, and tests for equality of some moment or

other property of the distribution underlying a sample.

The density function has seen little use in this area for

two reasons:

1) It is difficult to calculate a estimate of the

density, with the nice properties that already exist for :::

the sample distribution function.
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2) There has been no particular motivation to calcu-

late the density.

The first reason is a valid one. In the case of the

-second reason there should have been some motivation,

since the density estimate can provide additional

information which is particularly useful in small sample

situations.

In order to see the utility of the density function,

and grasp the idea that further information is provided,

It is instructive to consider a simple case. The

Kolmogorov-Smirnov statistic (or any of several related

statistics) is frequently used in various non-parametric

tests. This statistic is defined as:

SF - sUp IF,(x) - '2(x)l

If there were no further information to be gained from the

density function then one would expect that a similar

statistic defined for the density function,

sf- sp 11(x) - '2 (x)l

would be determined at the same point, x, as S F . That is,

if we consider continuous functions and define the points

where the maxima occur as:

Sf - i(x 1) - 2(xl)
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and

SF IFl(X 2 ) - '2 (x2 )1

then x I  x 2 . This is not true in general. Consider the

case where F1 - F2 is a continuous function. Then we know

that at max i - F)' 0

d/dx ( 1 - F2) - f1 - f2  0

if the maximum is interior to the interval of definition. 0

We also know that P(FI - F2 
= 0 for all x) = 0 implies

P(Sf=O) - 0 and P(xi) = 0 for a continuous distribution

and any single point (consider an endpoint), xi, thus

P(x1-X-) - PI 1 - F2 ) + P(xlix 2=xi) - 0

so the point associated with SF is not the same as the

point associated with Sf, and different information is

obtained with each of the functions.

Based upon this reasoning, It seems safe to conclude

that any test which has been performed with the sample

distribution function can be improved by using the sample

density function estimate derived here. This is not to

imply that sample distribution function methods should be

discarded, but rather that they should be augmented by a

similar procedure using the density function estimate.

The quality of such tests has already been demonstrated.

Goodness-of-fit tests and multiple sample tests are

logical extensions of this work. -
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V. Guidelines for Using the Estimator.

One always has the choice of using a parametric or

non-parametric method of estimating the density. The

choice is really whether or not one has enough knowledge

to be able to select the distributional form a priori.

The alternative is to rely upon the "gods of chance" and

let the data determine the distributional form and

parameters". Using a non-parametric method is, in a

sense, taking out an insurance policy. The premium will

determine whether or not the policy is cost effective.

Classical estimation relies on the choice of a set of

parameters from an assumed underlying probability dis-

tribution. In general, the underlying distribution is

selected by extra-mathematical means and is done sepa-

rately from the parameter estimation. As Fisher (52)

stated in 1922, when discussing the problem of specifica-

tion (as he called the selection of an undeelying density

function):

"As regards problems of specification,
these are entirely a matter for the practical
statistician, for those cases where the
qualitative nature of the hypothetical popu-
lation is known do not involve any problems of
this type. In other cases we may know by
experience what forms are likely to be suit-
able, and the adequacy of our choice may be
tested a posteriori. We must confine ourselves
to those forms which we know how to handle, or
for which any tables which may be necessary
have been constructed."
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Unfortunately, we are often not blessed with the in-

sight necessary to correctly select the underlying distri-

bution. Thus, attempts have been made to determine the

form of a sample (goodness-of -f it) or to protect against

incorrect assumptions by making the procedures robust

(5, 8,22,23,35,53,55,66,67,72,79 ,81,82,83,86,109,127,135,

163,198). Traditional goodness-of-fit tests have low power

for small samples. There are penalties to pay for any

form of protection derived by making the estimate more

robust, just as there are penalties for assuming the wrong

density form and blindly applying classical procedures.

Probably the most common way to analyze data Is to

estimate the parameters of a distribution using an

assumed probability law. Classical methods of parameter

estimation abound, including the maximum likelihood method

and the method of moments. Frequently, certain proper-

ties of estimators are required, such as: unbiasedness,

invariance,or linearity. These further restrict the class

of estimators considered and one can usually define a

"best" estimator within a certain class. All of these

methods assume a parametric model of the data.

An analysis of the neid density estimator presented

here shows one what the "premiums" are for using this

estimator rather than a maximum likelihood parametric

estimator. (Although the maximum likelihood estimate is

not necessarily the "best", it is well known and easily

107



calculated for comparison purposes.) The specific estima-

tors used were:

Uniform [a,b]:

a - x( 1 ) b - X() 0

Normal (gA,o " ):

a = 7 2 1/n (x,-)2

i-i

Double Exponential (IA,o):

nm

medianfxil a2 = 1/n 2  Ixil

One hundred samples of size 100 and of size ten were

generated from each of the three distributions, all with

zero mean and unit variance. The approximate MISE was

calculated for both the cumulative distribution function

and the probability density function using both estima-

tors. The medians of the errors calculated were used to

generate the tables in this section.

First the ratio of the errors:

Estimator Error
R =Max Likelihood Error

was calculated for each of *the cases. These data are

presented in Tables 15 and 16. The obvious conclusion is
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Table 15 - CDF Median Error Ratios (ASE)

Sample Size Uniform Normal Laplace

10 1.405 .8769 2.234

100 6.913 .8553 10.21 0

Table 16 - Pdf Median Error Ratios (ASE)

Sample Size Uniform Normal Laplace

10 1.133 1.279 1.581

100 1.097 1.496 7.425 0

that for small sample sizes the penalty for using the new

non-parametric estimator, even when one suspects the

underlying distribution, may not be too large. It is also

interesting to note that the non-parametric estimate for

the normal cumulative distribution function is consis-

tently better than the parametric maximum likelihood

estimate. The non-parametric estimate resulted in lower

error for 74% of the samples.

Since the entries in Tables 15 and 16 are ratios, a

decision of whether or not one can accept the degradation

in the estimate is dependent upon the actual error values.

Tables 17 and 18 show the median error values calculated

for the same samples. In general, the errors are quite
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Table 17 - Median MISE for Estimates of CDF

Sample Size Estimate Uniform Normal Laplace

10 New .00811 .00667 .00748

10 Max Lik .00443 .00960 .00394 p

100 New .00030 .00054 .00270

100 Max Lik .00004 .00075 .00021

I

rable 18 - Median MISE for Estimates of Pdf

Sample Size Estimate Uniform Normal Laplace P

10 New .0135 .0101 .0261

10 Max Lik .0103 .0072 .0146

100 New .0011 .0011 .0066

100 Max Lik .0008 .0008 .0008

low for many applications, thus one may be willing to pay

the "premium" for using the non-parametric estimate.

The alternative is to select the underlying distribu-

tion in advance. One may potentially pay a different

penalty in this case, that of selecting the wrong distri-

bution. Tables 19, 20, 21, and 22 show the comparable

errors for selecting the wrong distributions in these

cases.
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Table 19 -Median CDF MISE for Maximum
Likelihood Estimate n 10

Actual Distribution

Uniform Normal Laplace

Uniform .00443 .02447 .03772
Assumed

Normal .02364 .00960 .02738
Distribution

__________ Laplace .03311 .01999 .00394

Table 20 -Median Pdf MISE for Maximum
Likelihood Estimate n -10

Actual Distribution

Uniform Normal Laplace

Uniform .0103 .1003 .1305
Ass umed

Normal .0866 .0072 .0951
Distribution

Laplace .1121 .0888 .0146

Table 21 -Median CDF MISE for Maximum
Likelihood Estimate n =100

Actual Distribution

Uniform Normal Laplace

Uniform .00004 .03333 .05805
Assumed

Normal .03790 .00075 .00367
Distribution

___ ___ __ ___ ___ ___ ___ ___ __.04988_ .
Laplace .098.00471 .00021
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Table 22 -Median PdE MISE for Maximum
Likelihood Estimate ai 100D

Acistribstrtitin

Ditiuin Laplace 7 .0847 1 .0079 .-0008

One may be tempted to say that the Q discriminant pro-

babilities in Tables 1 and 2 coupled with the errors in

Tables 19 through 22 could lead to an adaptive parametric

estimator with smaller expected error than the non-para-

metric estimator. This is true; however, one is seldom,

if ever, in the situation where a selection between only

these distributions needs to be made. In the real world a

selection must be made from a continuous space of distri-

butions. The parametric estimator will pay a penalty

based upon the distance between the assumed distribution

and the actual distribution. The non-parametric estimator

is more likely to pay a penalty related to some measure of

the shape of the underlying distribution.

The question of what estimator to use ultimately

depends its specific use. However, for many cases vhere

there is uncertainty about t-he underlying distribution,

and where the sample size is small, the risk in using the
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non-parametric procedure outlined in this paper is smaller

than the risk associated with using a maximum likelihood

es tlma te.

0
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VI. Summary and Recommendations.

A new non-parametric density estimate has been

developed which has the following properties:

1) It is continuous and piecewise linear.

2) It converges to the true density function if the

true density has no more than a finite number of discon-

tinuities of a form where the value at the discontinuity

can be considered the average of the limiting values on

either side of the discontinuity.

3) It requires no user supplied parameters.

The estimator is shown to have significantly better

error properties, for certain classes of distributions,

than existing density estimators. The quality of the -

estimate is discussed, tabulated and graphically demon-

strated. Applications, including parameterization, small
b

sample analysis, and two sample tests are presented.

These newly developed applications are shown to improve

upon the generally accepted existing techniques. Guide-

lines for choosing a density estimation method along with

a discussion of an approach to method selection are pre-

sen ted.

Research opportunities in the field of density estima-

tion and its applications have been expanded by this

research. In particular, bhe applications shown have

demonstrated the utility, versatility, and strengths of .7
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density based techniques. Some of the possible extensions

of this effort are:

1) Extension of the technique to multivariate density

estimation.

2) Mlore exhaustive analysis of the two sample test

should be made to better bound the critical values and

power of the test. Theoretical developments in this area

may be feasible.

3) Some of the endpoint estimation techniques show

promise as tail length discriminators. Additional re-

search along these lines could lead to better methods of

tail classification and support definition.

4) Goodness-of-fit tests using the same technique as-

the two-sample test should be more powerful against some

alternatives than existing tests. If used in conjunction

with existing tests, they should always increase the

power.

5) New techniques of searching the objective space in

minimun distance estimation could lead to more effective

parameterization of the density. At least a four param-

eter family is probably necessary to cover unimodal

densities. Search time is prohibitively expensive using

the scheme presented here to find a global minimum of the

distance norm in four parameter space and evaluate it

thoroughly.

115



- --.-- 1

VI. Bibliography.

1. Abramowitz, Milton and Irene A. Stegun (editors). Hand-
book of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables. New York: Dover Publications, Inc.,
-1965.

2. Ahmad, I.A. "Nonparametric Estimation of the Location
and Scale Parameters Based on Density Estimation,"
Biometrics, 37: 610 (1981).

3. Ahmad, I.A. "Nonparametric-Estimation of the Location
and Scale Parameters Based on Density Estimation," Annals
of the Institute of Statistical Mathematics, 34: (,982).

4. Alam, Khurshed. Estimation of a Location Parameter.

Technical Report Nil. Arlington, Virginia: Office of
Naval Research, August, 1971. (AD 736 164).

5. Almquist, Kenneth C. Adaptive Robust Estimation of
Population Parameters Using Likelihood Ratio Techniques.
MS Thesis, AFIT/GORIMA/75D-1, Wright-Patterson Air Force
Base, Ohio, Air Force Institute of Technology (1975).

6. Anderson, G.L. and R.J.P. DeFigueiredo. "An Adaptive
Orthogonal-Series Estimator for Probability Density Func-
tions," Annals of Statistics, 8:347-376 (1980).

7. Anderson, T. W. and D. A. Darling. "Asymptotic Theory
of Certain 'Goodness of Fit' Criteria Based on Stochastic
Processes," Annals of Mathematical Statistics, 23: 193-212
(1952). -

8. Andrews, D.F., et. al. Robust Estimates of Location:
Survey and Advances. Princeton, New Jersey: Princeton

University Press, 1972.

9. Barlow, R.E., et. al. Statistical Inference Under

Order Restrictions. New York: John Wiley and Sons, 1972. - .

10. Bean, S.J. and C.P. Tsckos. "Developments in Nonpara-
metric Density Estimation," International Statistical
Review, 48: 267-287 (1980).

11. Bennett, J.O. Estimation of a Multivariate Prob-
ability Density Function Using B-Splines. Doctoral

Dissertation. Houston, Texas: Rice University, 1974.

12. Beran, Rudolf. "Minimum .Hellinger Distance Estimates

for Parametric Models," Annals of Statistics, j: 455-463
(1977) .

116

- .. . .~.. . . . . * . .*'- . . . .- *7 * .
_% *- W_ _% - -- -', . % -, - * - -%::.- : -. ? - *.



13. Bickel, P.J. "On Adaptive Estimation," Annals of -

Statistics, 10: 647-671 (1982).

14. Bickel, P.J. A Distribution-Free Version of the
-Smirnov Two Sample Test in the p-Variate Case. Technical
Report. Berkley, California: University of California,
September, 1967 (AD 695 154). S
15. Blom, Gunnar. Statistical Estimates and Transformed
Beta Variables. Stockholm: Alaquist and Wiksells, 1958.

16. Blum, J. and V. Susarla. "A Fourier Inversion Method
for the Estimation of a Density and It's Derivatives,"
Journal of the Australian Mathematical Society (Series A), P
23: 166-171-F 977). -__

17. Borth, David N. "A Total Entropy Criterion for the
Dual Problem of Model Discrimination and Parameter Estima-
tion," Journal of the Royal Statistical Society Series B--
Methodological, 37: 77-87 (1975). 5

18. Brigham, E. Oran. The Fast Fourier Transform.
Englewood Cliffs, N.J.: Prentli1call, 1974.-

19. Brunk, H.D. "On the Range of the Difference Between
Hypothetical Distribution Functions and Pyke's Modified
Empirical Distribution Function," Annals of Mathematical
Statistics, 33: 525-532 (1962).

20. Cacoullos, T. "Estimation of a Multivariate Density,"
Annals of the Institute of Statistical Mathematics, 18: b

179-190 (19-M )-

21. Campbell, G. "Nonparametric Bivariate Estimation with
Randomly Censored Data," Biometrika, 68: 417-422 (1981).

22. Caso, John. Robust Estimation Techniques for Location
Parameter Estimation of Sy!!etric Distributions. MS 5
Thesis, AFITGSA/MAl2-3, Wright-Patterson Air Force Base,
Ohio, Air Force Institute of Technology (1972).

23. Chan, Lai K. and Lennart S. Rhodin. "Robust Estima-
tion of Location Using Optimally Chosen Sample Quantiles,"
Technometrics, 22: 225-237 (1980).

24. Cheng, Kuang-Fu. "On Estimation of a Density and It's
Derivatives," Presented at INS 1980 Meeting. Ann Arbor,
Michigan, August, 1980.

117

.i-':- .- ' :":. . "..... .... '.++.. .. .......-. .. ,............... ....... . .. . . . . .-.-



25. Cheng, K.F. and R.J. Serfling. On Rates of Conver-
jenge in the L2 Norm of Nonparametric Probability Density
Estimates. Technical Report. Florida State University at
Tallahassee, Department of Statistics, July, 1979 (AD A
072 134).

-26. Chung, Kai Lai. & Course in Probablity Theory. New
York: Academic Press, 1974.

27. Cook, R.D. and M.E. Johnson "A Family of Distribu-
tions for Modeling Non-Elliptically Symmetric Multivariate
Data," Journal of the Royal Statistical Society, Series
B-- Methodological, 43: 210-2-18 1981).

28. Cooke, P.J. "Statistical Inference for Bounds of
Random Variables," Biometrika, 66: 367-374 (1979).

29. Cooke, P.J. "Optimal Linear Estimation of Bounds of
Random Variables," Biometrika, 67: 257-258 (1980).

30. Crain, Bedford R. "An Information Theoretic Approach
to Approximating a Probability Distribution," SIAM Journal
of Applied Mathematics, 32: 339-346 (March 19777

31. Cressie, Noel. "Transformations and the Jackknife,"
Journal of the Royal Statistical Society Series B--
Methodological, 43: 177-182 (1981-

32. Crowder, George E., Jr. Adaptiv e Estimation Based on
a Family of Generalized Exponential Distributions. MS
Thesis, AFITGO---O ---7D-2, Wright-Patterson Air Force

Base, Ohio, Air Force Institute of Technology (1977).

33. Cuadras , C.M. and J. Aug.. "A Continuous General
Multivariate Distribution and Its Properties," Communica-
tions in Statistics Part A--Theory and Methods, 10: 339-
353 (91T1).

34. Dahira, Ram C. and John Gurland. A Test of Fit for
Bivariate Distributions. Technical Report No. MRC-TSR-
1058. Madison, Wisconsin: University of Wisconsin Nathe-
matics Research Center, July, 1971 (AD 729 285).

35. Daniels, Tony G. Robust Estimation of the Generalized
t Distribution Usin Minimum Distance Estimation. MS
Thesis, AFIT/GOR/MA/8OD-2, Wright Patterson Air Force
Base, Ohio, Air Force Institute of Technology (December
1980)

36. David, F.N. and N.L. Jbhnson. "The Probability
Integral Transform when Parameters are Estimated from the
Sample," Biosetrika,35: 182-190 (1948).

118
Iii~:

.................................................

-..- ."-,. ..,- .. ,. ",.- ,- *.. .".". ,,. ''': . """. ." "". .".,''_." " , _""." "' .. ,"/ .'".. . -i "."'...'''.-.'''. -""



37. David, H.A. Order Statistics. New York: Wiley, 1970.

38. Deheuvels, P. "An Asymptotic Decomposition for Multi-
variate Distribution-Free Tests of Independence," Journal S
of Multivariate Analysis, 11:102-113 (1981).

-39. deMontricher, G.F., R.A.Tapia and J.R. Thompson.
"Non-Parametric Maximum Liklihood Estimation of Prob-

ability Densities by Penalty Function Methods," Annals of
Statistics,_ 3:1329-1348 (1975).

40. Deuser, L.M. and D.G. Lainiotis. Minimum Mean Sq
Error Approximation of Unknown Probability Distribution
Functions. Technical Report. Austin, Texas: University
of Texas Electronics Research Center, December 1968 (ad
686 564).

41. Devroye, Luc P. "A Uniform Bound for the Deviation of
Empirical Distribution Functions," Journal of Multivariate
Analysis, 7: 594-597 (1977).

42. Devroye, Luc P. Nnametric Discrimination and
Density Estimation. Ph.D. Thesis, University of Texas at
Austin (1976).

43. Dudewicz, Edward J. and Edward C van der Mevlen.
Entropy-Based Statistical Inference, I: Testing Hypotheses
on Continuous Probability Densities with Special
Reference to Uniformity. Report No. 120. Leuven,
Belgium: Department of Mathematics, Katholieke
Universiteit Leuven, June 1979.

44. Durbin, J. "Kolmogorov-Smirnov Tests when Parameters
are Estimated with Applications to Tests of Exponentiality
and Tests on Spacings," Biometrika,62: 5-22 (1975).

45. Dvoretzky, A., J. Kiefer and J. Wolfowitz. "Asymp-
totic Minimax Character of the Sample Distribution
function and of the Classical Multinomial Estimator,"
Annals of Mathematical Statistics, 27: 642-669 (1956).

46. Easterling, Robert G. "Goodness of Fit and Parameter

Estimation," Technometrics, 18: 1-9 (February 1976).

47. Efron, B. The Jackknife, the Bootstrap and Other Re-
sampling Plans. Philadelphia: Society for Industrial and
Applied Mathematics, 1982.

48. Efron, B. "Bootstrap Methods: Another Look at the
Jackknife," Annals of Statistics, 7: 1-26 (1979).

119

,, -'%



49. Epanechnikov, V.A. "Nonparametric Estimates of a
Multivariate Probability Density," Theory of Probability
and It's Applications, 14:153-158 (1969).

-

50. Fellegi, Ivan P. "Approximate Tests of Independence
and Goodness of Fit Based on Stratified Multistage
-Samples," JASA, 75: 261-268 (1980).

51. Fisher, N.I. "Unbiased Estimation for some Nonpara-
metric Families of Distributions," Annals of Statistics,
10: 603-615 (1982).

52. Fisher, R.A. "On the Mathematical Foundations of
Theoretical Statistics," Philosophical Transactions of the
Royal Society of London, Series A222: 309-368 (1922). -

53. Forth, Charles R. Robust Estimation Techniques for
Population Parameters and Regression Coefficients. MS
Thesis, AFIT/GOAF7'4-1, Wright Patterson Air Force Base,
Ohio, Air Force Institute of Technology (1974).

54. Foutz, Robert V. "A Test for Goodness-of Fit Based on
an Empirical Probability Measure," Annals of Statistics,
8: 989-1001 (1980).

55. Gastwirth, J. "On Robust Procedures," JASA, 61: 929-
948 (1966).

56. Gibbons, Jean D. Nonparametric Statistical Inference.
New York: McGraw-Hill, 1971.

57. Good, I.J. and R.A. Gaskins. "Non Parametric Rough-
ness Penalties for Probability Densities," Biometrika, 58: "
255-277 (1971).

58. Goodman, I.R. Generation of a Multivariate Distribu-
tion for Specified Univariate Marginals and Covariance
Structure. Technical Report No. NRL-MR-4425. Washington,
D.C.: Naval Research Laboratory, May, 1981 (AD A 099 578).

59. Gray, H.L., W.R. Schucany, and T.A. Watkins. "On the
Generalized Jackknife and It's Relation to Statistical -"

Differentials," Biometrika, 62: 637-642 (1975).

60. Green, J.R. andY.A.S. Hagazy. "Powerful Modified EDF
Goodness-of-Fit Tests," JASA, 71: 204-209 (March 1976).

61. Gruska, Gregory F. "Distributional Analysis of Non- -'-

normal Multivariate Data," ASQC Technical Conference
Transactions: 553-560 (1978).-

120
.* 9:

*



Z •

62. Gupta, Shanti S. On Order Statistics and Some Appli-
cations of Combinatorial Methods in Statistics. Technical
Report. Lafayette, Indiana: Purdue University, 1973 (AD
766 386).

63. Haff, L.R. "Empirical Bayes Estimation of the Multi-
variate Normal Covariance Matrix," Annals of Statistics,
8: 586-597 (1980).

64. Hall, Peter. "On Estimating the Endpoint of a Distri-
bution," Annals of Statistics, 10: 556-568 (1982).

65. Hall, Peter. "The Influence of Rounding Errors on
Some Nonparametric Estimators of a Density and Its Deriva-
tives," SIAM Journal on Applied Mathematics, 42: 390-399
(1982).

66. Hampel, Frank R. "A General Qualitative Definition of
Robustness," Annals of Mathematical Statistics, 42: 1887-
1896 (1971).

67. Hampel, Frank R. "The Influence Curve and its Role in
Robust Estimation," JASA,69: 383-393 (1974).

68. Harp, Tilford. Fully Adaptive Estimation of the Para-
meters of a t and Half-t Distribution. MS Thesis, X ...
GORiMA/79-1, Wright-Patterson Air Force Base, Ohio, Air
Force Institute of Technology (1979).

69. Harter, H. Leon. "Another Look at Plotting Posi-
tions," Communications in Statistics, Part E -

Statistical Reviews. To be published during 1984.

70. Harter, H. Leon. "The Use of Order Statistics in
Estimation," Operations Research, 16: 783-798 (1968).

71. Harter, H. Leon, Harry J. Khamis, and Richard E. Lamb.
"Modified Kolmogorov-Smirnov Tests of Goodness of Fit,"
Unpublished Manuscript. Dayton, Ohio: Wright State
University, Department of Mathematics and Statistics
(1982).

72. Harter, H. Leon, Albert H. Moore and Thomas F. Curry.
"Adaptive Robust Estimation of Location and Scale Para-
meters of Symmetric Populations," Communications in
Statistics--Theory and Methods, A8: 1473-1491 (i979).

73. Hartley, H.O. and R.C.Pfaffenberger. On a Family of
Lesser Known Goodness of Fit Criteria. Technical Report
THEMIS-TR-0. College Station, Texas: Texas A&M Univer-
sity, Institute of Statistics, May, 1971 (AD 724 806).

121

-•i b• bai - .•-...°".-



I

74. Hazen, Allen. Flood Flows. New York: Wiley, 1930.

75. Heathcote, C.R. "The Integrated Squared Error Estima-
tion of Parameters," Biometrika, 64: 255-264 (1977).

76. Hill, B.M. "A Simple General Approach to Inference
-About the Tail of a Distribution," Annals of Statistics,
3: 1163-1174 (1975).

77. Hill, D.L. and P.V. Rao. "Tests of Symmetry Based on
Cramer von Mtises Statistics," Biometrika, 64: 489-494
(1977).

78. Hodges, J.L. and E.L. Lehmann. "Estimates of Location
Based on Rank Tests," Annals of Mathematical Statistics,
34: 598-611 (1963). 0

79. Hogg, Robert V. "Adaptive Robust Procedures: A
Partial Review and Some Suggestions for Future Applica-
tions and Theory," JASA, 69: 909-927 (1974).

80. Holcomb, R.L., R.A. Kronmal and M.E. Tartar. "A Des- 3
cription of New Computer Methods for Estimating the
Population Density," Proceedings from the Association of
Computing Machinery, 22. New York: Thompson Book Co.,
511-519 (1967).

81. Hsu, Jason C. "Robust and Nonparametric Subset

Selection Procedures," Communications in Statistics, Part
A--Theory and Methods, A9: 1439-1459 (N980).

82. Huber, Peter J. "Robust Location of a Location Para-
meter," Annals of Mathematical Statistics, 35: 73-101
(1964). S

83. Huber, Peter J. "The 1972 Wald Lecture: Robust
Statistics: A Review," Annals of Mathematical Statistics,
43: 1041-1067 (1972).

84. James, William L. Minimum Distance Estimation Tech-
niques Based on a Family of Gamma Distributions Using
Robust Estimation and Monte Carlo Simulation. MS Thesis,
AFIT/ GOR/MA/80d-3, Wright-Patterson Air Force Base, Ohio,
Air Force Institute of Technology (1980).

85. Jones, D.H. "Efficient Adaptive Distribution-Free
Test for Location," JASA, 74: 822-828 (1979).

86. Jorgensen, Loren W. Robust Estimation of Location and
Scale Parameters. MS Thesis. AFIT/GSAIMA.773-2, Wright-
Patterson Air Force Base, Ohio, Air Force Institute of
Technology (1973).

122

. . . . . . . . . . . . . . . . .. . . . . .-. [-



87. Kaplan, E.L. and P.Meier. "Nonparametric Estimation
from Incomplete Observations," JASA, 53: 457-481 (1958).

88. Kapur, R.C. and L.R. Lamberson. Reliability in Eng-
ineering Design. New York: Wiley, 1977.

-89. Kiefer, J. "On Large Deviations of the Empirical
Distribution Function of Vector Chance Variables," Annals
of Mathematical Statistics, 32: 649-660 (1961).

90. Kiefer, 3. and J3. Wolfowitz. "On the Deviations of
the Empiric Distribution Function of Vector Chance
Variables," Transactions of the American Mathematical
Society, 87: 173-186T 1958).

91. Kim, B.K. and J. Van Ryzin. "Uniform Consistency of a
Histogram Density Estimator and Modal Estimation,"
Communications in Statistics, 4: 303-315 (1975).

92. Kimball, B.F. "On the Choice of Plotting Positions on
Probability Paper," JASA, 55: 546-560 (1960).

93. Kingman, J.F.C., and S.J.Taylor. Introduction to
Measure and Probability. Cambridge, England: Cambridge
University Press, 1966.

94. Klonias, V.K. "Consistency of Two Maximum Per.4lized
Liklihood Estimates of the Probability Density Function,"
Annals of Statistics, 10: 811-824 (1982).

95. Kochar, Subhash C. "Distribution Free Comparison of
Two Probability Distributions with Reference to Their
Hazard Rates," Biometrika, 66: 437-442 (1979).

96. Kochar, Subhash C. "A New Distribution Test for the
Equality of Two Failure Rates," Blometrika, 68: 423-426
(1981).

97. Konakov, V.D. "Some Problems in Nonparametric Estima-
tion of a Probability Density," Theor of Probability and

Its Applications, 25: 638-639 (98).

98. Konakov, V.D. "Complete Asymptotic Expansions for
Maximum Deviation of an Empirical Density Function,"
Theory of Probability and Its Applications, 22: 632-634

99. Kotz, Samuel. Multivariate Distributions at a
Crossroad. Technical Report. Philadelphia, Pennsylvania: %
Temple University, Department of Mathematics, July, 1974
(AD A 000 391).

123

• :: .,..,. . ... ., .. ............-...* ,... :.-., y,...:.. , , ...... .... . ,... .* .,... . . . . . . . .. - ,.-,
"- - . . .. " " > " :"""-' " -" " " " "" """ ""- . " - " .""' ' 't- "- ' " " " " " " - "'" - - - " .':-. '' ''-'3 . "'''



100. Kotz, Samuel. Multivariate Statistical Models: -
Abstracted Subjected-Classified Bibliography. Technical
Report. Philadelphia, Pennsylvania: Temple University,
Department of Mathematics, 1974 (AD A 000 390).

101. Kotz, Samuel. Annotated and Abstracted Bibliography
on Multivariate Statistical ModelsTechnical Report.
Philadelphia, Pennsylvania: Temple University, Department
of Mathematics, 1974 (AD A 000 389).

102. Kowar, Ramesh M. and Myles Hollander. Empirical
Bayes Estimation of a Distribution Function. Tech. Rpt.
FSU-Statistics-M288. Tallahassee, Florida: Florida State
University, Dept. of Statistics, March, 1974 (AD 778 455).

103. Koziol, J.A. "Test for Bivariate Symmetry Based on
the Empirical Distribution Function," Communications in
Statistics--Theory and Methods, 8: 207-221-11979).

104. Koziol, J.A. "Goodness of Fit Tests Based on
Empirical Distribution Function for Uniform Spacings,"
Journal of the Royal Statistical Society, Series B-- S
Methodological, 39: 333-336 (1977).

105. Kozoil, J.A. and S.B.Green. "A Cramer-von Mises
Statistic for Randomly Censored Data," Biometr L 63:
465-473 (1976).

P
106. Kreimerman, Joseph. A Bivariate Test of Goodness of
Fit based on a Gradually Increasing Number of Order
Statistics. Technical Report No. TR-250. Ithaca, N.Y.
Cornell University, Department of Operations Research,
March, 1975 (AD A 008 205).

107. Kronmal, R.A. and M.E. Tartar. "The Estimation of
Probability Densities and Cumulatives by Fourier Series "
Methods," JASA, 63: 925-952 (1968).

108. Lamperti, John. Probabilit_. New York: W.A.
Benjamin, Inc, 1966.

109. Launer, Robert L. and Graham N. Wilkinson. " -n
Robustness in Statistics. New York: Academic Press, 1979.

110. Leonard, T. The Empirical Bayesian Estimation of a
One-Dimensional Function. Technical Report, University of
Wisconsin-Madison, Mathematics Research Center (1982).

111. Leonard, T. Bayes Estimation of a Multivariate

Density. Technical Report. University of Wisconsin-
Madison, Mathematics Research Center, February, 1982. (AD
A 114 579).

124. . . .*. *x... .- .* *

.- .-. *L-. %. .. ~. . . . . .



112. Lii, Keh-Shin and M.Rosenblatt. "Asymptotic Behavior
of a Spline Estimate of a Dens tty Function," Computation
and Mathematics with Applications, 1: 223-235T1975Y--

113. Lilliefors,Hubert W. "On the Kolmogorov-Smirnov Test
for Normality with Mean and Variance Unknown," JASA, 399-
-402 (1967).

114. Littell, R.C., J.r. McClave, and W.W. Offen. 
"Goodness of Fit Tests for the Two Parameter Weibull
Distribution," Communications in Statistics--Simula.
Computa., B8: 257-269-(1979).

115. Mack, Y.P. and M. Rosenblatt. "Multivariate K-
Nearest Neighbor Density Estimates," Journal of
Multivariate Analysis, 9: 1-15 (1979).

116. MacQueen, James and Jacob Marschak. "Partial o
Knowledge, Entropy and Estimation," Proceedings of the
National Academy of Sciences, 3819-3824 (October 1975).

117. Mann, H.8. and D.R. Whitney. "On a Test of Whether
One of Two Random Variables is Stochastically Larger than
the Other," Annals of Mathematical Statistics, 18: 50-60
(1947) .

118. Mann, N.R., E.•.Scheuer and K.W. Fertig. "A New
Goodness of Fit Test for the Two Parameter Weibull or
Extreme Value Distribution with Unknown Parameters,"
Communications in Statistics, 2: 383-400 (1973).

119. McGrath, E.J. and D.C. Irving. Techniaues for
Efficient Monte Carlo Simulation. Volume II. Random
Number Generation for Selected Probability Distributions.
SAI Report SAI-72-590-I, Arlington, Virginia: Office of
Naval Research, March 1973 (AD 762 722).

120. McNeese, Larry B. AdapStive Minimum Distance.
Estimation Techniques Based on a Family of Generalized
Exponential Power Distributions. MS Thesis, .
AFIT-GORTMAd'F8d, Wright-Patterson Air Force Base, Ohio,
Air Force Institute of Technology (December 1980).

121. McNichols, D.T. and W•J.Padgett. Kernel Density
Estimation Under Random Censorship. Technical Report No.
74. Columbia, S.C.: University of South Carolina,
Department of Mathematics and Statistics, October, 1981.

122. Michael, John R. and William R. Schucany. The
Influence Curve and Goodness of Fit. Technical Report TR-
137. Dallas, Texas: Southern Methodist University,
Department of Statistics, May, 1980 (AD A 085 593).

125



123. Mihalko, Daniel P. and David S. Moore. "Chi-Square
Tests of Fit for Type II Censored Data," Annals of --

Statistics, 8: 625-644 (May 1980).

124. Miller, James E., Jr. Continuous Density Approxima-
tion on a Bounded Interval Using Information Theoretic
Concepts. Ph.D. Dissertation, AFITDS/A 80-1, Wright-
Patterson Air Force Base, Ohio, Air Force Institute of
Technology (1980).

125. Miller, Rupert G. "The Jackknife-- A Review,"
Biometrika, 61: 1-15 (1974).

126. Moore, Albert H. "Extension of Monte Carlo
Techniques for Obtaining System Reliability Confidence
Limits from Component Test Data," Proceedings of the
National Aerospace Electronics Conference, 459-463 (may
1965).

127. Moore, Albert H. Robust Statistical Inference.
Notes from a short course presented at the Air Force
Institute of Technology, Wright-Patterson Air Force Base,
Ohio, February 1981.

128. Moore, D.S. and E.G. Henrichon. "Uniform Consistency
of some Estimates of a Density Function," Annals of Mathe-
matical Statistics, 40: 1499-1502 (1969).

129. Morgera, S.D. "Structured Estimation, .2. Multi-
variate Probability Density Estimation," IEEE Transactions
on Information Theory, 27: 607-622 (1981).

130. Nadaraya, E.A. "Some Problems in Nonparametric
Estimation of Probability Densities and a Regression
Curve," Theory of Probability and Its Applications, 25:
637-638 (1981..

131. Nadaraya, E.A. "On Nonparametric Estimates of
Density Functions and Regression Curves," Theory of
Probability and Its Applications, 10: 186-190 (1965).

132. Nadaraya, E.A. "Remarks on Nonparametric Estimates
for Density Functions and Regression Curves," Theory of
Probability and Its Applications, 15: 134-137 (1970).

133. O'Reilly, Federico J. and Michael A. Stephens.
Characterizations and Goodness of Fit Tests. Technical
Report TR-302. Stanford University, Department of
Statistics, June, 1981 (AD A 102 167).

126

...................~* .W - t



- - ....--

0

134. Padgett, W.J., R.L. Taylor and L.J. Wei. Nonpara-
metric Bayes Estimation of Distribution Functions and the
Study of Probability Density Estimates. Technical Report.
Columbia, S.C.: South Carolina University, Department of
Mathematics and Statistics, June, 1981 (AD A 102 413).

135. Parr, William C. Minimum Distance and Robust
Estimation. Ph.D. Dissertation, Dallas, Texas, Southern
Methodist University, 1978.

136. Parr, William C. Minimum Distance Estimation: A
Bibliography. Unpublished Manuscript. Institute of
Statistics, Texas A&M University, College Station, Texas,
1980.

137. Parr, William C. and William R. Schucany. "The Jack-
knife: A Bibliography," International Statistical Review,
48: 73-78 (1980).

138. Parr, William C. and T. Dewet. On Minimum CVM-Norm
Parameter Estimation. Unpublished Manuscript. Institute
of Statistics, Texas A&M University, College Station,
Texas, and Department of Mathematical Statistics, Rhodes
University, Grahamstown, South Africa, 1979.

139. Parzen, Emanuel. "On the Estimation of a Probability
Density Function and the Mode," Annals of Mathematical
Statistics, 33:1065-1076 (1962). ,

140. Parzen, Emanuel. Nonparametric Statistical Data Sci- -
ence: A Unified Approach Based on Density Estimation and
TestinnL for White Noise. Tech. Rpt. Univ. of New York,
Amherst, Jan. 1977. (AD A 051 090).

141. Parzen, Emanuel. "Nonparametric Statistical Data
Modeling," JASA, 74: 105-121 (1979).

142. Patil, S.A., J.L. Kovner and K.P. Burnham. "Optimum
Nonparametric Estimation of Population Density Based on
Ordered Distances," Biometriks, 38: 243-248 (1982).

143. Pearson, Karl. "Contributions to the Mathematical
Theory of Evolution. II.Skev Variations in Homogeneous
Material," Philosophical Transactions of the Royal y .
Society of London, Series A 186: 343-414 (18T-5). -

144. Pennington, Ralph H. Introductory Computer Methods
and Numerical Analysis. New York: Macmillan, 1965.

145. Penrod, C.S. Nonparametric Estimation with Loca-1
Rules. Ph.D. Dissertation, University of Texas at Austin
1976.

127
3-'.



146. Pettitt, A.N. "Testing for Bivariate Normality Using
the Empirical Distribution Function," Communications in
Statistics--Theory and Methods, 8: 699-712T- 1979).

147. Phadia, Eswarlal G. "A Note on Empirical Bayes
Estimation of a Distribution Function Based on Censored
-Data," Annals of Statistics, 8: 226-229 (1980).

148. Phadia, Eswarlal G. On Estimation of a Cumulative
Distribution Function. Ph.D. Dissertation, Columbus, .
Ohio, Ohio State University, 1971.

149. Pollard, D. "The Minimum Distance Method of
Testing," Metrika, 27: 43-70 (1980).

150. Puri, Madan Lal. Nonparametric Technijues in 
Statistical Inference. Technical Report. Bloomington,
Indiana: Indiana University, Department of Statistics,
1970 (AD 720 284).

151. Puri, Madan L. and Lanh T. Tran. "Empirical 
Distribution Functions and Functions of Order Statistics
for Mixing Random Variables," Journal of Multivariate
Analysis, 10: 405-425 (1980).

152. Pyke, Ronald. "The Supremum and Infinum of the
Poisson Process," Annals of Mathematical Statistics, 30:
568-576 (1959). -

153. Pyke, Ronald. "Spacings," Journal of the Royal
Statistical Society, Series B, 27: 395-436 (f9651-.

154. Quenouille, N.H. "Approximate Tests of Correlation
in Time-Series," Biometrika, 43:353-360 (1956).

155. Ramberg, John S., et. al. "A Probability Distribu-
tion and its Uses in Fitting Data," Technometrics, 21:
201-214 (1979).

156. Rao, C. Radhakrishna. Linear Statistical Inference
and Its Applications. New York: Wiley, 1965.

157. Reiss, R.D. "Nonparametric Estimation of Smooth
Distribution Functions," Scandinavian Journal of Statis-
tics, 89:116-119 (1982).

158. Reiss, R.D. "On Minimum Distance Estimators for
Unimodal Densities," Metrika, 23: 7-14 (1976).

159. Rosenblatt, M. "A Quadratic Measure of Deviation of
Two-Dimensional Density Estimates and a Test of Indepen-
dence," Annals of Statistics, 3: 1-14 (1975).

128

- . .



160. Rosenblatt, Murray. "Remarks on Some Nonparametric
Estimates of a Density Function," Annals of Mathematical
Statistics, 27: 832-837 (1956).

161. Rothman, E.D. and M. Woodroofe. "A Cramer-von Mises
-Type Statistic for Testing Symmetry," Annals of Mathe-
matical Statistics, 43: 2035-2038 (1972).,

162. Rudemo, M. "Empirical Choice of Histograms and
Kernel Density Estimators," Scandinavian Journal of
Statistics, 9: 65-78 (1982).

163. Rugg, Bernard J. Adaptive Robust Estimation of
Location and Scale Parameters Usin& Selected 
Discriminants. MS Thesis, AFITrOR/MA74TD-3, Wrigh t -
Patterson Air Force Base, Ohio, Air Force Institute of
Technology (1974).

164. Rustagi, J.S. and S. Dynin. Jackknifing Kernel Type
Density Estimators. Technical Report No. 280. Department
of Statistics, Ohio State University, Columbus, Ohio
(1983).

165. Sahler, W. "A Survey on Distribution-Free Statistics
Based on Distances Between Distribution Functions,"
Metrika, 13: 149-169 (1968).

166. Sahler, W. "Estimation By Minimum Discrepancy
Methods," Metrika, 15: 85-106 (1970).

167. Saniga, Erwin H. and James A. Miles. "Power of Some
Standard Goodness-of-Fit Tests of Normality Against
Asymmetric Stable Alternatives," JASA, 74: 861-865 (1979).

168. Saunders, Roy and Purushottam Laud. "The Multi-
dimensional Kolmogorov Goodness-of-Pit Test," Biometrika,
6 7: 2 37 ( 19 80).

169. Saxena, A.K. "Complex Multivariate Statistical
Analysis: Annotated Bibliography," International Statis-
tical Review, 46: 209-214 (1978).

170. Schoenberg, I.J. "Notes on Spline Functions II: On
the Smoothing of Histograms," Technical Report No. 1222,
Univ. of Wis. at Madison, Mathematics Research Center
(1972)

171. Schoenberg, I.J. Splines and Histograms. Technical
Report No. 1273, University of Wisconsin at Madison,
Mathematics Research Center (1972)

129

Z-:!



172. Schreiber, F. "Generalized Equations for the
Objective Empirical Distribution Function," AEU-Archiv fur
Elektronik und Ubertragungstechnik - Electronics and
Communication, 36: 168-172 (198.

173. Schucany, W.R. and J.P.Sommers. "Improvements of
-Kernel Type Density Estimators," JASA, 72: 420-423 (1977).

174. Schuster, Eugene F. "Estimation of a Probability
Density Function and Its Derivatives," Annals of
Mathematical Statics, 40: 1187-1195 (1969).

175. Schuster, Eugene F. "On the Goodness-of-Fit Problem
for Continuous Symmetric Distributions," JASA, 68: 713-715
(1973). Corrigenda 1AS± 69: 288 (1974).

176. Schuster, Eugene F. "Estimating the Distribution
Function of a Symmetric Distribution," Biometrika, 62:
631-636 (1975).

177. Schwartz, Stewart. "Estimation of a Probability
Density by an Orthogonal Series," Annals of Mathematical
Statistics, 38: 1261-1265 (1967).

178. Scott, D.W., R.A. Tapia and J.R. Thompson. "Nonpara-
metric Density Estimation by Discrete Maximum Penalized-
Likelihood Criteria," Annals of Statistics, 8: 820-832
(1980). - H
179. Scott, D.W., R.A. Tapia and J.R. Thompson. "Kernel
Density Estimation Revisited," Nonlinear Analysis, 1: 339-
372 ( 1977).

180. Scott, D.W., R.A. Tapia and J.R. Thompson. Sen, --

Pranab Kumar. "Nonparametric Tests for Multivariate
Interchangeability. Part 1: Problems of Location and
Scale in Bivariate Distributions," a: The Indian
Journal of Statistics, Series A, 29: (1967).

181. Shorack, G.R. and J.A. Wellner. "Linear Bounds on
Empirical Distribution Function," Annals of Probability,
6: 349-353 (1978).

182. Sievers, Gerald L. and John Kapenga. Approximate
Empirical Distributions for the Computation of Nonpara-
metric Statistics. Technical Report TR-64. Kalamazoo,
Michigan: Western Michigan University, Department of
Mathematics, February, 1981 (AD A 100 223).

183. Silverman, S.W. "On the Estimation of a Probability
Density Function by the Maximum Penalized Liklihood
Method," Annals of Statistics, 10: 795-810 (1982).

130

&"o fo



184. Silverman, B.W. "Choosing the Window Width when

Estimating a Density," Biometrika, 65: 1-13 (1978).

185. Simons, Gordon. Generalized Cumulative Distribution
Functions: I. The Linear Case with Applica tions to

-Nonparametric Statistics. Technical Report. Chapel Hill ",-'-""17"
North Carolina: University of North Carolina, Department
of Statistics, August, 1972 (AD 751 286).

186. Singh, Jagbir. "Minimum Variance Unbiased Estimation
of Probability Densities," Australian Journal of Statis-
tics, 22: 328-331 (1980).

187. Singh, R.S. "Mean Square Error of Estimates of a
Density and its Derivatives," Biometrika, 66:177-180 
(1979).

188. Sinha, Bimal K. and H.S. Wieand. "Bounds on the
Efficiencies of Four Commonly Used Nonparametric Tests of
Location," Sankh.a, Series B._ Indian Journal of
Statistics, 39: 12 1-129 -T7977 - -

189. Smaga, Edward. "Smooth Empirical Distribution
Function," Przeglad Statystyezny, 25.1: Warsaw, Poland
(1978).

190. Smirnov, N.V. "Estimate of Deviation Between P
Empirical Distribution Functions in Two Independent
Samples," (in Russian) Bulletin of Moscow University, 2:
3-16 (1939).

191. Smith, R. M. and L.J. Bain. "Correlation Type
Goodness-of-Fit Statistics with Censored Samples,"
Communications in Statistics--Theorz and Methods, A5: 119-

132 (1976).

192. Srikanthan, R. and T.A. mcMahon. "Log Pearson III
Distribution - An Empirically Derived Plotting Position,"
Journal of Hydrology, 52: 161-163 (1981). S

193. Stephens, M.A. "Use of Kolmogorov-Smirnov, Cramer-
von Mises and Relaxed Statistics Without Extensive
Tables," Journal of the Royal Statistical Society, Series

s" 32, No. l :115 -T2"T9 7

194. Stephens, M.A. "EDF Statistics for Goodness-of-Fit
and Some Comparisons," JASA, 69: 730-737 (1974).

195. Stephens, M.A. "Goodness-of-Fit for the Extreme
Value Distribution," Biometrika, 64: 583-588 (1977).

131

. .

... " ". ... ...... """, -:



196. Stephens, M.A. EDF Statistics for Goodness-of-Fit.

Part 2. Power Studies. Part 3. Miscellaneous Complements.
Tech. Report. Palo Alto, California: Stanford University,
Department of Statistics, December, 1972 (AD 758 670).

197. Stigler, Stephen M. Simon Newcomb, Percy Daniell,
and the History of Robust Estimation, 1385-1920.
Technical Report No. 319. Arlington, Virginia: Office of ,

Naval Research, December 1972 (AD 757 026).

198. Stigler, Stephen M. "Do Robust Statistics Work with
Real Data?" (With Discussants), Annals of Statistics,
5:1055-1098 (1977).

199. Stigler, Stephen M. "Studies in the History of Prob-
ability and Statistics XXXVIII--R.H. Smith, A Victorian
Interest in Robustness," Biometrika, 67: 217-221 (1980).

200. Stone, Charles J. "Optimal Rates of Convergenge for
Nonparametric Estimators," Annals of Statistics, 8: 1348-
1360 (1980).

201. Susarla, V. and G. Walter. "Estimation of a Multi-
variate Density Function Using Delta Sequences," Annals of
Statistics, 9: 347-355 (1981).

202. Sweeder, J. Nonparametric Estimation of Distribution -

and Density Functions With AppLications. PhD

isse T AFI T CS 7 iTs-82-1. Wright-Patterson Air Force
Base, Ohio: Air Force Institute of technology, 1982

203. Tapia, Richard A. and James R. Thompson. Nonpara-

metric Probability Density Estimation. Baltimore: Johns

Hopkins University Press, 1978.

204. Tsokos, Chris P. and A. Rust III. "Recent Develop-
ments in Nonparametric Estimation of Probability," Applied
Stochastic Processes: 269-281 (1980).

205. Tukey, J.W. "Bias and Confidence in Not-quite Large
Samples," Annals of Mathematical Statistics, 29: 614
(1958).

206. Turnbull, Bruce W. "The Empirical Distribution

S Function with Arbitrarily Grouped, Censored and Truncated
Data," Journal of the Royal Statistical Society Series B--
Methodological, 38: 25 (1976).

207. Vanzuijlen, M.C.A. "Properties of the Empirical

Distribution Function for Independent Non-Identically
Distributed Random Vectors," Annals of Probability, 10:
108-123 (1982).

132
,p °

* K °



208. Vogt, Herbert. "Concerning a Variant of the
Empirical Distribution Function," Metrika, 25: 49-58
(1978).

209. Wagner, T.J. The Study of Distribution-Free Perfor-
mance Bounds for Nonparametric Discrimination Algorithms.
Technical Report. University of Texas at Austin, Depart-_
ment of Electrical Engineering, June, 1977 (AD A 042 685).

210. Wagner, T.J. "Nonparametric Estimates of Probability •
Densities," IEEE Transactions on Information Theory, IT-
21: 438-440 ( 5T19 7 5-.

211. Wagner, T.J. "Strong Consistency of a Nonparametric
Estimate of a Density Function," IEEE Transactions on
Systems, Man, and Cybernetics, 3: 289-290 (1973).

212. Wagner, T.J. and W.H. Rogers. "A Finite Sample
Distribution-Free Performance Bound for Local Discrimina-
tion Rules," Accepted by Annals of Statistics

213. Wagner, T.J. and C.S. Penrod. "Risk Estimation for
Nonparametric Discrimination and Estimation Rules: A
Simulation Study," Submitted to IEEE Transactions on
Systems, Man, and Cybernetics.

214. Wahba, Grace. "Optimal Convergence Properties of
Variable Knot, Kernel, and Orthogonal Series Methods for
Density Estimation," Annals of Statistics, 3: 15-29
(1975).

215. Wahba, Grace. Interpolating Spline Methods for.
Density Estimation. II.Variable Knots. Technical Report
337. University of Wisconsin at Madison, Department of
Statistics, 1973.

216. Wahba, Grace "A Polynomial Algorithm for Density
Estimation," Annals of Mathematical Statistics, 42: 1870-
1886 (1971).

217. Wahba, Grace and A. Wold. "Periodic Splines for
Spectral Density Estimation: The Use of Cross Validation
for Determining the Degree of Smoothing," Communication
Statistics, 4: 125-141 (1975).

218. Wald, A. and J. Wolfowitz. "On a Test of Whether Two
Samples Are From the Same Population," Annals of Mfathe-
matical Statistics, 11: 147-162 (1940). .

219. Walter, Gilbert G. "Properties of Hermite Series
Estimation of Probability Density," Annals of Statistics, --

5: 1258-1264 (1977).

133



220. Walter, Gilbert G. and J. Blum. "Probability Density
Estimation Using Delta Sequences," Annals of Statistics,
7:328-340 (1979).

221. Waterman, M.S. and D.E. Whiteman. "Estimation of
Probability Densities by Empirical Density Functions,"
-International Journal of Mathematical Education in Science
and Technology, 9: 127-137 (1978)."

222. Watson, G.S. "Density Estimation by Orthogonal S
Series," Annals of Mathematical Statistics, 34: 1496-1498
(1969).

223. Watson, G.S. and M.R. Leadbetter. "Hazard Analysis
II," Sankhya, 26A: 101-116 (1964).

224. Watson, G.S. and M.R. Leadbetter. "On the Estimation
of the Probability Density I," Annals of Mathematical
Statistics, 34: 480-491 (1963).

225. Wegman, Edward J. "Nonparametric Probability Density
Estimation: I. A Summary of Available Methods," 
Technometrics, 14: 533-546 (1972).

226. Wegman, Edward J. "Nonparametric Probability Density
Estimation: II. A Comparison of Density Estimation
Methods," Journal of Statistical Computations and Simula-
tion, 1: 225-245 (fT7 P.,

227. Wegman, Edward J. and H.I. Davies. "Remarks on Some
Recursive Estimators of a Probability Density," Annals of
Statistics, 7: 316-327 (1979).

228. Weibull, Waloddi. Outline of a Theory of Powerful
Selection of Distribution Functions. Technical Report
Scientific-C. Lausanne, Switzerland: March, 1971 (AD 725
037).

229. Weiss, L. and J. Wolfowitz. "Asymptotically
Efficient Nonparametric Estimators of Location and Scale
Parameters," Z. Wahrscheinlichkeits -Theorie Revw
Geb iete, 16: if4ild-0iWT.-7

230. Westergaard, Harald. Contributions to the History of
Statistics. New York, Agathon, 1968.

231. White, John S. "The Moments of Log-Weibull Order
Statistics," Technoetrics, 11: 373-386 (1969).

232. Whittle, P. "On Smoothing of Probability Densit-y
Functions," Journal of the Royal Statistical Society
Series B, 20: 334-343T958.

134

P-i



- - . -. . . r r-- - --v- -. . ..-.- -. .-.-. . . . . . . . . . . . . . ..,- . . . . .. - . - . . - - - .. .

233. Wold, S. "Spline Functions in Data Analysis,"
Technometrics, 16: 1-11 (1974).

234. Wolfowitz, J. "The Minimum Distance Method," Annals
of Mathematical Statistics, 28: 75-88 (1957).

-235. Wolfowitz, J. "Convergence of the Empiric
Distribution Function on Half-spaces," Contributions in -"-

Probability and Statistics. Edited by I. Olkin, et.al.,
Stanford University Press, California, 504-507 (1960).

236. Woodroofe, Michael. "On Choosing a Delta Sequence,"
Annals of Mathematical Statistics, 41: 1665-1671 (1970).

237. Wright, Ian W. Spline Methods in Statistics.
Technical Report No. 77-1307. Bolling Air Force Base,
D.C., Air Force Office of Scientific Research, 1977 (AD A
049 197).

238. Yu, George C.S. "Power Bounds on Some Nonparametric
Test Procedures for Censored Data," Sankhya, Series B,
Indian Journal of Statistics, 39: 279-283 (1977).

239. Zacks, Shelemyahu. The Theory of Statistical
Inference. New York: Wiley, 1971.

135

.. J - - . ,- -..



VITA

Major Ronald P. Fuchs was born on 1 August 1944 in

-Providence, Rhode Island. He graduated from high school

In Arlington, Virginia in 1962 and attended Virginia Poly-

technic Institute and State University (VPI&SU) as a

cooperative education student and received a degree of

Bachelor of Science in Aerospace Engineering in June 1967. .-

He was commissioned in the USAF through ROTC. He

continued at VPI&SU until he received his Master of

Science in Control System Engineering in 1968.

Major Fuchs has served as Chairman of the Government

Fluidics Coordinating Group (1971), and as a member of the

AIAA National Technical Committee on Guidance and Control

(1974-76). He has numerous technical publications in

diverse fields.

He served in the Air Force as a project manager on

the Space Defense System at Space Division; as Assistant

Professor of Astronautics and Director of the Guidance and

Control Laboratc-y at the USAF Academy; and as project

manager for the F-16 program at Aeronautical Systems

Division. Major Fuchs entered the School of Engineering,

Air Force Institute of Technology, in June 1981.

Permanent Address: 3885 Tumico P1.

Fairfax, VA 22030

136



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Is REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED_______________ _____

2s. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/A VAILABILITY OF REPORT

Approved for Public Release;
* 2b. OECLASSIFICATION/OOWNGRADING SCHEDULE Dsrbto niie

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

* 6&. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7s. NAME OF MONITORING ORGANIZATION

On. NAME OF FUNDING/SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION F-16 SPO (it applicable)

S c. ADDRESS (City. State and ZIP Code) 10. SOURCE OP FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT

0Wright-Patterson AFB, OH, 45433 ELE MENT NO. NO. NO. NO.

11. TITLE (Include Security Classification)
See Box 19

* 12. PERSONAL AUTHOR(S) oadP uh

13& TYPE OF REPORT 13b. TIME COVERED 1.DTOFEPR(r.M..aY) 15. PAGE COUNT
PhD Dissertation FROM _ ___TO 84 May 148
16. SUPPLEMENTARY NOTATION

17. COSATI CODES JI. SUBJECT TERMS (Continue on reverse if neceusary and identify by block, number)
FIELD GROUP SUB. GR. I tatistical Functions, Statistical Tests, Non-

Iparametric Statistics, Probability Density
IFunctions, Statistics

*19. ABSTRACT (Continue on reverse if neceusary and identify by block number)

Title: A NON-PARAMETRIC PROBABILITY DENSITY ESTIMATOR AND SOME
APPLICATIONS

Chairman: Albert H. Moore

EV . WCLiAVfl 6:e
A torlo Fls ' and Prcle~sional DeveaIpman,

zi Forc@ lns~jlj.I. Cl 1hchnaiogY (AIC)
SNfdghLQUt9.ravr AFBS on 45432

20. DISTRIlBUTION/A VAI LABI1LIT Y OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED)X SAME AS RPT. C3 DTIC USERS 0 UNCLASSIFIED
22. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL

Albert H. Moore, Professor cueAaCo'

DD FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE. UCASFE
SECURITY CLASSIFICATION OF THIS PAGE



UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

A new non-parametric probability density estimator is developed

which has the following properties:

1) It yields a continuous, non-negative and piecewise linear

estimate of a probability density function.

2) It converges to the true density function if the true density

has no more than a finite number of discontinuities of a form where

the value of the function at the discontinuity can be considered the

average of the limiting values on either side of the discontinuity.

3) It requires no user supplied parameters.

The estimator is shown to have significantly better error proper-

ties, for certain classes of distributions, than existing density

estimators. The quality of the estimate is discussed, tabulated and

graphically demonstrated. Applications, including parameterization,

small sample analysis, and two sample tests are presented. These

newly developed applications are shown to improve upon the generally

accepted existing techniques. Guidelines for choosing a density

estimation method along with an organized approach to method selection

are discussed. .

UNCLASSIFIED
SECURITY CLASSIPICATION OF THIS PAGE

S-\ ~..-,



FILMED

44-85

D TIC


